题目列表(包括答案和解析)
如图甲,在中,为锐角,点为射线上一点,连接,以为一边且在的右侧作正方形.解答下列问题:
(1)如果,,
①当点在线段上时(与点不重合),如图乙,线段之间的位置关系为 ,数量关系为 .
②当点在线段的延长线时,如图丙,①中的结论是否仍然成立,为什么?
(2)如果,,点在线段上运动.试探究:当满足一个什么条件时,(点重合除外)?画出图形,并说明理由.(画图不写作法).
如图甲,在中,为锐角,点为射线上一点,连接,以为一边且在的右侧作正方形.解答下列问题:
(1)如果,,
①当点在线段上时(与点不重合),如图乙,线段之间的位置关系为 ,数量关系为 .
②当点在线段的延长线时,如图丙,①中的结论是否仍然成立,为什么?
(2)如果,,点在线段上运动.试探究:当满足一个什么条件时,(点重合除外)?画出图形,并说明理由.(画图不写作法).
2 |
如图1,在中,为锐角,点为射线上一点,联结,以为一边且在的右侧作正方形.
(1)如果,,
①当点在线段上时(与点不重合),如图2,线段所在直线的位置关系为 __________ ,线段的数量关系为 ;
②当点在线段的延长线上时,如图3,①中的结论是否仍然成立,并说明理由;
一、填空题:
1.60°.
2.答案不惟一,如:AE=CF,∠AEB=∠CFD,∠ ABE=∠CDF;
3.1;
4.4。
5.60
7.2-2
8.15。
9.5
10.4
11.5
12. 2,3,n。
14.
15. (-8,0)。
16.6。
17. .平行四边形。
18.60
19.4,12
二、选择题:
1.C
2.C
3.B
4.B
5.B
6.A
7.C。
8.B。
9.C
10.D
11.C。
12.B
13.B
14.C
15.D
16. C
17.C
18.D
19.D
20.C
21.D
22.D。
三、解答题:
1.(1)如图答2,因为AD∥BC,AB∥DC ------------------------------------------------- 2分
所以四边形ABCD为平行四边形.---------------------------------------------------------------- 3分
分别过点B、D作BF⊥AD,DE⊥AB,垂足分别为点E、F.
则BE = CF.-------------------------------------------------------------------------------------------- 4分
因为∠DAB =∠BAF,所以Rt△DAB≌Rt△BAF.--------------------------------------------- 5分
所以AD = AB.
所以四边形ABCD为菱形.-------------------------------------------------------------------------- 6分
(2)存在最小值和最大值.-------------------------------------------------------------------------- 7分
① 当∠DAB = 90°时,菱形ABCD为正方形,周长最小值为8;---------------------------8分
② 当AC为矩形纸片的对角线时,设AB = x,如图答3,在Rt△BCG中,
,.所以周长最大值为17.-------------------------------------------9分
2.证明: ∵EF垂直平分AC,∴EF⊥AC,且AO=CO-------------------------------1′
证得:△AOE≌△COF-----------------------------------------------------------3′
证得:四边形AECF是平行四边形------------------------------------------------5′
由AC⊥EF可知:四边形AECF是菱形 -------------------------------------------6′
5.(本题满分8分)
解:(1)方法一:如图①
∵在□ ABCD中,AD∥BC
∴∠DAB+∠ABC=180° ………………………1分
∵AE、BF分别平分∠DAB和∠ABC
∴∠DAB=2∠BAE,∠ABC=2∠ABF ………………………2分
∴2∠BAE+2∠ABF=180°
即∠BAE+∠ABF=90° ………………………3分
∴∠AMB=90°
∴AE⊥BF. …………………………4分
|