.已知数列. 计算数列的第20项. 现已给出该问题算法的程序框图. (1)请在图中判断框中的处填 上合适的语句.使之能完成该题的算法功能. (2) 根据程序框图编写程序. 23.把函数在及之间的一段图象近似地看作直线.设. 证明:的近似值是: 24.某初级中学共有学生2000名.各年级男.女生人数如下表: 初一年级 初二年级 初三年级 女生 373 x y 男生 377 350 z 已知在全校学生中随机抽取1名.抽到初二年级女生的概率是0.20. 求x的值, 现用分层抽样的方法在全校抽取48名学生.问应在初三年级抽取多少名? 已知y245,z245,求初三年级中男生不比女生少的概率. 厦门六中2009-2010学年上学期高二半期考 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)

哈尔滨冰雪大世界每年冬天都会吸引大批游客,现准备在景区内开设经营热饮等食品的店铺若干.根据以往对500名40岁以下(含40岁)人员和500名40岁以上人员的统计调查,有如下一系列数据:40岁以下(含40岁)人员购买热饮等食品的有260人,不购买热饮食品的有240人;40岁以上人员购买热饮等食品的有220人,不购买热饮等食品的有280人,请根据以上数据作出22列联表,并运用独立性检验思想,判断购买热饮等食品与年龄(按上述统计中的年龄分类方式)是否有关系?

注:要求达到99. 9%的把握才能认定为有关系.

s

 

查看答案和解析>>

(本小题满分12分)在第9届校园文化艺术节棋类比赛项目报名过程中,我校高二(2)班共有16名男生和14名女生预报名参加,调查发现,男、女选手中分别有10人和6人会围棋.

(I)根据以上数据完成以下22列联表:

 

会围棋

不会围棋

总计

 

 

 

 

 

 

总计

 

 

30

并回答能否在犯错的概率不超过0.10的前提下认为性别与会围棋有关?

参考公式:其中n=a+b+c+d

参考数据:

0.40

0.25

0.10

0.010

0.708

1.323

2.706

6.635

(Ⅱ)若从会围棋的选手中随机抽取3人成立该班围棋代表队,则该代表队中既有男又

有女的概率是多少?

(Ⅲ)若从14名女棋手中随机抽取2人参加棋类比赛,记会围棋的人数为,求的期望.

 

查看答案和解析>>

(本小题满分12分)

    已知函数

   (Ⅰ)若曲线处的切线平行于直线,求函数的单调区间;

   (Ⅱ)若函数上有两个零点,求实数的取值范围。

    请考生在第(22)、(23)、(24)三题中任选一题作答,如果多做,则按所做的第一题计分,作答时请在答题纸上所选题目题号的方框内打“√”。

 

查看答案和解析>>

(本小题满分12分)

    哈尔滨冰雪大世界每年冬天都会吸引大批游客,现准备在景区内开设经营热饮等食品的店铺若干。根据以往对500名40岁以下(含40岁)人员和500名40岁以上人员的统计调查,有如下一系列数据:40岁以下(含40岁)人员购买热饮等食品的有260人,不购买热饮食品的有240人;40岁以上人员购买热饮等食品的有220人,不购买热饮等食品的有280人,请根据以上数据作出22列联表,并运用独立性检验思想,判断购买热饮等食品与年龄(按上述统计中的年龄分类方式)是否有关系?

    注:要求达到99.9%的把握才能认定为有关系。

  

 

查看答案和解析>>

(本小题满分12分)

某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:

日    期

1月10日

2月10日

3月10日

4月10日

5月10日

6月10日

昼夜温差

10

11

13

12

8

6

就诊人数

22

25

29

26

16

12

该兴趣小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.

⑴ 求选取的2组数据恰好是相邻两个月的概率;

⑵ 若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出关于的线性回归方程

⑶ 若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?

 

查看答案和解析>>


同步练习册答案