21.解:过点作.是垂足. 则..············ 3分 .. .·················· 5分 . .················· 8分 . 答:森林保护区的中心与直线的距离大于保护区的半径.所以计划修筑的这条高速公路不会穿越保护区. 10分 查看更多

 

题目列表(包括答案和解析)

26、知:如图,①、②,解答下面各题:
(1)图①中,∠AOB=45°,点P在∠AOB内部,过点P作PE⊥OA,PF⊥OB,垂足分别为E、F,,求∠EPF的度数.

(2)图②中,点P在∠AOB外部,过点P作PE⊥OA,PF⊥OB,垂足分别为E、F,那么∠P与∠O有什么关系?为什么?

(3)通过上面这两道题,你能说出如果一个角的两边分别垂直于另一个角的两边,则这两个角是什么关系?

查看答案和解析>>

21、已知:如图,①、②,解答下面各题:
(1)图①中,∠AOB=65°,点P在∠AOB内部,过点P作PE⊥OA,PF⊥OB,垂足分别为E、F,,求∠EPF的度数.
(2)图②中,点P在∠AOB外部,过点P作PE⊥OA,PF⊥OB,垂足分别为E、F,那么∠P与∠O有什么关系?为什么?
(3)通过上面这两道题,你能说出如果一个角的两边分别垂直于另一个角的两边,则这两个角是什么关系?

查看答案和解析>>

已知:如图,①、②,解答下面各题:
(1) 图①中,∠AOB=65°,点P在∠AOB内部,过点P作PE⊥OA,PF⊥OB,垂足分别为E、F,求∠EPF的度数。
(2)如图,点P在∠AOB外部,过点P作PE⊥OA,PF⊥OB,垂足分别为E、F,那么∠P与∠O有什么关系?为什么?
(3) 通过上面这两道题,你能说出如果一个角的两边分别垂直于另一个角的两边,则这两个角是什么关系?

查看答案和解析>>

阅读下面的材料,并回答所提出的问题:如图所示,在锐角三角形ABC中,求证:
b
sinB
=
c
sinC

这个三角形不是一个直角三角形,不能直接使用锐角三角函数的知识去处理,所以必须构造直角三角形,精英家教网过点A作AD⊥BC,垂足为D,则在Rt△ABD和Rt△ACD中由正弦定义可完成证明.
解:如图,过点A作AD⊥BC,垂足为D,
在Rt△ABD中,sinB=
AD
AB
,则AD=csinB
Rt△ACD中,sinC=
AD
AC
,则AD=bsinC
所以c sinB=b sinC,即
b
sinB
=
c
sinC

(1)在上述分析证明过程中,主要用到了下列三种数学思想方法的哪一种(  )
A、数形结合的思想;B、转化的思想;C、分类的思想
(2)用上述思想方法解答下面问题.
在△ABC中,∠C=60°,AC=6,BC=8,求AB和△ABC的面积.
(3)用上述结论解答下面的问题(不必添加辅助线)
在锐角三角形ABC中,AC=10,AB=5
6
,∠C=60°,求∠B的度数.

查看答案和解析>>

阅读下面的材料,并回答所提出的问题:如图所示,在锐角三角形ABC中,求证:数学公式
这个三角形不是一个直角三角形,不能直接使用锐角三角函数的知识去处理,所以必须构造直角三角形,过点A作AD⊥BC,垂足为D,则在Rt△ABD和Rt△ACD中由正弦定义可完成证明.
解:如图,过点A作AD⊥BC,垂足为D,
在Rt△ABD中,sinB=数学公式,则AD=csinB
Rt△ACD中,sinC=数学公式,则AD=bsinC
所以c sinB=b sinC,即数学公式
(1)在上述分析证明过程中,主要用到了下列三种数学思想方法的哪一种
A、数形结合的思想;B、转化的思想;C、分类的思想
(2)用上述思想方法解答下面问题.
在△ABC中,∠C=60°,AC=6,BC=8,求AB和△ABC的面积.
(3)用上述结论解答下面的问题(不必添加辅助线)
在锐角三角形ABC中,AC=10,AB=数学公式,∠C=60°,求∠B的度数.

查看答案和解析>>


同步练习册答案