题目列表(包括答案和解析)
已知不等式ax2+bx+c>0的解集为(1,t),记函数f(x)=ax2+(a-b)x-c.
(1)求证:函数y=f(x)必有两个不同的零点;
(2)若函数y=f(x)的两个零点分别为m,n,求|m-n|的取值范围;
(3)是否存在这样的实数a,b,c及t使得函数y=f(x)在[-2,1]上的值域为[-6,12]?若存在,求出t的值及函数y=f(x)的解析式;若不存在,请说明理由.
已知函数f(x)满足当,当的最大值为-4.
(1)求x∈(0,2)时函数f(x)的解析式;
(2)是否存在实数b使得不等式对于若存在,求出实数b的取值集合,若不存在,说明理由.
已知f(x)是二次函数,不等式f(x)<0的解集是(0,5),且f(x)在区间[-1,4]上的最大值是12.
(1)求f(x)的解析式;
(2)是否存在自然数m,使得方程f(x)+=0在区间(m,m+1)内有且只有两个不等的实数根?若存在,求出所有m的值;若不存在,请说明理由.
已知f(x)是二次函数,不等式f(x)<0的解集是(0,5)且f(x)在区间[-1,4]上的最大值是12.
(Ⅰ)求f(x)的解析式;
(Ⅱ)是否存在实数m使得方程在区间(m,m+1)内有且只有两个不等的实数根?若存在,求出m的取值范围;若不存在,说明理由.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com