由此可得 查看更多

 

题目列表(包括答案和解析)

由3人组成的一个代表队参加某项知识竞赛.竞赛共有10道题,每题可由任一人回答,答对得10分,答错得0分.假设3人答题是相互独立的,且回答问题正确的概率分别为0.4、0.4、0.5,则此次竞赛该代表队可望获得
82
82
分.

查看答案和解析>>

由倍角公式cos2x=2cos2x-1,可知cos2x可以表示为cosx的二次多项式.
对于cos3x,我们有
cos3x=cos(2x+x)=cos2xcosx-sin2xsinx
=(2cos2x-1)cosx-2(sinxcosx)sinx
=2cos3x-cosx-2(1-cos2x)cosx
=4cos3x-3cocs.
可见cos3x可以表示为cosx的三次多项式.
一般地,存在一个n次多项式Pn(t),使得cosnx=Pn(cosx),这些多项式Pn(t)称为切比雪夫(P.L.Tschebyscheff)多项式.
(1)请尝试求出P4(t),即用一个cosx的四次多项式来表示cos4x.
(2)化简cos(60°-θ)cos(60°+θ)cosθ,并利用此结果求sin20°sin40°sin60°sin80°的值.

查看答案和解析>>

由于浓酸泄漏对河流形成了污染,现决定向河中投入固体碱.1个单位的固体碱在水中逐步溶化,水中的碱浓度y与时间x的关系,可近似地表示为y=
-
16
x+2
-x+8    0≤x≤2
4-x                  2<x≤4
.只有当河流中碱的浓度不低于1时,才能对污染产生有效的抑制作用.
(1)如果只投放1个单位的固体碱,则能够维持有效抑制作用的时间有多长?
(2)当河中的碱浓度开始下降时,即刻第二次投放1个单位的固体碱,此后,每一时刻河中的碱浓度认为是各次投放的碱在该时刻相应的碱浓度的和,求河中碱浓度可能取得的最大值.

查看答案和解析>>

由于浓酸泄漏对河流形成了污染,现决定向河中投入固体碱.1个单位的固体碱在水中逐步溶化,水中的碱浓度y(个浓度单位)与时间x(个时间单位)的关系为y=
-
24
x+3
-x+8,   0≤x≤
3
2
23
12
-
1
2
x   ,      
3
2
<x≤
23
6
.只有当河流中碱的浓度不低于1(个浓度单位)时,才能对污染产生有效的抑制作用.
(1)如果只投放1个单位的固体碱,则能够维持有效抑制作用的时间有多长?
(2)当河中的碱浓度开始下降时,即刻第二次投放1个单位的固体碱,此后,每一时刻河中的碱浓度认为是两次投放的碱在该时刻相应的碱浓度的和,求河中碱浓度可能取得的最大值.

查看答案和解析>>

由于浓酸泄漏对河流形成了污染,现决定向河中投入固体碱.1个单位的固体碱在水中逐步溶化,水中的碱浓度y与时间x的关系,可近似地表示为y=.只有当河流中碱的浓度不低于1时,才能对污染产生有效的抑制作用.
(1)如果只投放1个单位的固体碱,则能够维持有效抑制作用的时间有多长?
(2)当河中的碱浓度开始下降时,即刻第二次投放1个单位的固体碱,此后,每一时刻河中的碱浓度认为是各次投放的碱在该时刻相应的碱浓度的和,求河中碱浓度可能取得的最大值.

查看答案和解析>>


同步练习册答案