已知函数.当时.方程有且只有一个实数解,时.方程有三个不同的实数解.现给出下列命题: ① 函数有两个极值点, ② 方程有一个相同的实根, ③方程的任一实根都小于方程的任一实根, ④ 函数的最大值是5.最小值是1. 其中正确命题的序号是 . 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)=ax3+bx2+(b-a)x(a,b不同时为零的常数),导函数为f′(x).
(1)当a=
1
3
时,若存在x∈[-3,-1]使得f′(x)>0成立,求b的取值范围;
(2)求证:函数y=f′(x)在(-1,0)内至少有一个零点;
(3)若函数f(x)为奇函数,且在x=1处的切线垂直于直线x+2y-3=0,关于x的方程f(x)=-
1
4
t
在[-1,t](t>-1)上有且只有一个实数根,求实数t的取值范围.

查看答案和解析>>

已知函数f(x)=ax3+bx2+(b-a)x(a,b是不同时为零的常数),其导函数为f'(x).
(1)当时,若不等式对任意x∈R恒成立,求b的取值范围;
(2)若函数f(x)为奇函数,且在x=1处的切线垂直于直线x+2y-3=0,关于x的方程在[-1,t](t>-1)上有且只有一个实数根,求实数t的取值范围.

查看答案和解析>>

已知函数f(x)=ax3+bx2+(b-a)x(a,b是不同时为零的常数),其导函数为f'(x).
(1)当时,若不等式对任意x∈R恒成立,求b的取值范围;
(2)若函数f(x)为奇函数,且在x=1处的切线垂直于直线x+2y-3=0,关于x的方程在[-1,t](t>-1)上有且只有一个实数根,求实数t的取值范围.

查看答案和解析>>

已知函数f(x)=ax3+bx2+(b-a)x(a,b是不同时为零的常数),其导函数为f'(x).
(1)当时,若不等式对任意x∈R恒成立,求b的取值范围;
(2)若函数f(x)为奇函数,且在x=1处的切线垂直于直线x+2y-3=0,关于x的方程在[-1,t](t>-1)上有且只有一个实数根,求实数t的取值范围.

查看答案和解析>>

已知函数f(x)=ax3+bx2+(b-a)x(a,b是不同时为零的常数),其导函数为f'(x).
(1)当时,若不等式对任意x∈R恒成立,求b的取值范围;
(2)若函数f(x)为奇函数,且在x=1处的切线垂直于直线x+2y-3=0,关于x的方程在[-1,t](t>-1)上有且只有一个实数根,求实数t的取值范围.

查看答案和解析>>


同步练习册答案