知是等差数列. 查看更多

 

题目列表(包括答案和解析)

已知 是等差数列,是公比为的等比数列,,记为数列的前项和,

(1)若是大于的正整数,求证:

(2)若是某一正整数,求证:是整数,且数列中每一项都是数列中的项;

(3)是否存在这样的正数,使等比数列中有三项成等差数列?若存在,写出一个的值,并加以说明;若不存在,请说明理由;

 

查看答案和解析>>

已知是等差数列,其中,前四项和
(1)求数列的通项公式an; 
(2)令,①求数列的前项之和
是不是数列中的项,如果是,求出它是第几项;如果不是,请说明理由。

查看答案和解析>>

已知 是等差数列,是公比为的等比数列,,记为数列的前项和,
(1)若是大于的正整数,求证:
(2)若是某一正整数,求证:是整数,且数列中每一项都是数列中的项;
(3)是否存在这样的正数,使等比数列中有三项成等差数列?若存在,写出一个的值,并加以说明;若不存在,请说明理由;

查看答案和解析>>

已知是等差数列,是公比为q的等比数列,,记为数列的前n项和。

(1)若是大于2的正整数)。求证:

(2)若(i是某个正整数,求证:q是整数,且数列中的每一项都是数列中的项。

(3)是否存在这样的正数q,使等比数列中有三项成等差数列?若存在,写出一个q的值,并加以说明,若不存在,请说明理由。

查看答案和解析>>

已知是等差数列,其前n项和为Sn是等比数列,且.

(Ⅰ)求数列的通项公式;

(Ⅱ)记,证明).

【解析】(1)设等差数列的公差为d,等比数列的公比为q.

,得.

由条件,得方程组,解得

所以.

(2)证明:(方法一)

由(1)得

     ①

   ②

由②-①得

(方法二:数学归纳法)

①  当n=1时,,故等式成立.

②  假设当n=k时等式成立,即,则当n=k+1时,有:

   

   

,因此n=k+1时等式也成立

由①和②,可知对任意成立.

 

查看答案和解析>>


同步练习册答案