某地有A.B.C.D四人先后感染了甲型H1N1流感.其中只有A到过疫区.B肯定是受A感染的.对于C,因为难以判定他是受A还是受B感染的.于是假定他受A和受B感染的概率都是.同样也假设D受A.B和C感染的概率都是. (Ⅰ)试写出A.B.C.D都被感染所有可能情况,(例如. ) (Ⅱ)求A直接感染2人的概率. 过点作两条互相垂直的直线.与轴交于点A.与轴交于点B.求线段AB的中点M的轨迹方程. 在区间中随机地取出两个数.求使方程无实根的概率. 某校高二年级共有1200名学生.为了分析某一次数学考试情况.今抽查100份试卷.成绩分布如下表: 成绩 人数 4 5 6 9 21 27 15 9 4 频率 0.04 0.05 0.06 0.09 0.21 0.27 0.15 0.09 0.04 (Ⅰ)画出频率分布直方图, (Ⅱ)由频率分布表估计这次考试及格的人数, (Ⅲ)由频率分布直方图估计这考试的平均分. 如图.四棱锥的底面是一个边长为4的正方形.侧面是正三角形.侧面底面. (Ⅰ)求四棱锥的体积, (Ⅱ)求直线与平面所成的角的正弦值. 已知椭圆:的左.右焦点为..椭圆上的点 满足. (Ⅰ)求椭圆的标准方程, (Ⅱ)自定点作一条直线与椭圆交于不同的两点.(点在点的下方).记.求的取值范围. 查看更多

 

题目列表(包括答案和解析)

(本题满分12分)海水受日月的引力,在一定的时候发生涨落的现象叫潮,一般地,早潮叫潮,晚潮叫汐. 在通常情况下,船在涨潮时驶进航道,靠近码头;卸货后,在落潮时返回海洋. 下面是某港口在某季节每天的时间与水深关系表:

时刻

2:00

5:00

8:00

11:00

14:00

17:00

20:00

23:00

水深(米)

7.5

5.0

2.5

5.0

7.5

5.0

2.5

5.0

经长期观测,这个港口的水深与时间的关系,可近似用函数

来描述.

(1)     根据以上数据,求出函数的表达式;

(2)     一条货船的吃水深度(船底与水面的距离)为4.25米,安全条例规定至少要有2米的安全间隙(船底与洋底的距离),该船在一天内(0:00~24:00)何时能进入港口?在港口能停留多久?

 

查看答案和解析>>

(本题满分12分)为了了解某年级1000名学生的百米成绩情况,随机抽取了若干学生的百米成绩,成绩全部介于13秒与18秒之间,将成绩按如下方式分成五组:第一组[13,14);第二组[14,15);……;第五组[17,18].按上述分组方法得到的频率分布直方图如图所示,已知图中从左到右的前3个组的频率之比为3∶8∶19,且第二组的频数为8.

(1)将频率当作概率,请估计该年段学生中百米成绩在[16,17)内的人数;

(2)求调查中随机抽取了多少个学生的百米成绩;

(3)若从第一、五组中随机取出两个成绩,求这两个成绩的差的绝对值大于1秒的概率.

 

 

 

查看答案和解析>>

(本题满分12分)探究函数的最小值,并确定取得最小值时的值,列表如下:

0.5

1

1.5

1.7

1.9

2

2.1

2.2

2.3

3

4

5

7

8.5

5

4.17

4.05

4.005

4

4.005

4.102

4.24

4.3

5

5.8

7.57

请观察表中值随值变化的特点,完成下列问题:

(1) 当时,在区间上递减,在区间       上递增;

所以,=       时, 取到最小值为        

(2) 由此可推断,当时,有最      值为        ,此时=     

(3) 证明: 函数在区间上递减;

(4) 若方程内有两个不相等的实数根,求实数的取值范围。

 

查看答案和解析>>

(本题满分12分)某学校课题组为了研究学生的数学成绩与物理成绩之间的关系,随机抽取高二年级20名学生某次考试成绩(满分100分)如下表所示:

序号

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

数学

成绩

95

75

80

94

92

65

67

84

98

71

67

93

64

78

77

90

57

83

72

83

物理

成绩

90

63

72

87

91

71

58

82

93

81

77

82

48

85

69

91

61

84

78

86

 

 

若单科成绩85分以上(含85分),则该科成绩为优秀.

(1)根据上表完成下面的2×2列联表(单位:人):

 

数学成绩优秀

数学成绩不优秀

合   计

物理成绩优秀

 

 

 

物理成绩不优秀

 

 

 

合   计

 

 

20

(2)根据题(1)中表格的数据计算,有多大的把握,认为学生的数学成绩与物理成绩之间有关系?

(3)若从这20个人中抽出1人来了解有关情况,求抽到的学生数学成绩与物理成绩至少有一门不优秀的概率.

参考数据及公式:

①随机变量,其中为样本容量;

②独立检验随机变量的临界值参考表:

0.010

0.005

0.001

6.635

7.879

10.828

 

 

 

 

 

查看答案和解析>>

(本题满分12分)

为了解某年段1000名学生的百米成绩情况,随机抽取了若干学生的百米成绩,成绩全部介于13秒与18秒之间,将成绩按如下方式分成五组:第一组[13,14);第二组[14,15);……;第五组[17,18].按上述分组方法得到的频率分布直方图如图所示,已知图中从左到右的前3个组的频率之比为3∶8∶19,且第二组的频数为8.

(1)将频率当作概率,请估计该年段学生中百米成绩在[16,17)内的人数;

(2)求调查中随机抽取了多少个学生的百米成绩;

(3)若从第一、五组中随机取出两个成绩,求这两个成绩的差的绝对值大于1秒的概率.

 

查看答案和解析>>


同步练习册答案