22.题4分.第题8分. 设函数.其中a为常数且.令函数的积函数. (1)求函数的表达式.并求其定义域. (2)当时.求函数的值域. (3)是否存在自然数a.使得函数的值域恰为?若存在.试写出所有满足条件的自然数a所构成的集合,若不存在.试说明理由. 查看更多

 

题目列表(包括答案和解析)

(本题满分18分) 本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.

我们把定义在上,且满足(其中常数满足)的函数叫做似周期函数.

(1)若某个似周期函数满足且图像关于直线对称.求证:函数是偶函数;

(2)当时,某个似周期函数在时的解析式为,求函数的解析式;

(3)对于确定的时,,试研究似周期函数函数在区间上是否可能是单调函数?若可能,求出的取值范围;若不可能,请说明理由.

 

查看答案和解析>>

(本题满分18分) 本题共有3个小题,第1小题满分4分,第2小题满分6分. 第3小题满分8分.

(理)对于数列,从中选取若干项,不改变它们在原来数列中的先后次序,得到的数列称为是原来数列的一个子数列. 某同学在学习了这一个概念之后,打算研究首项为正整数,公比为正整数的无穷等比数列的子数列问题. 为此,他任取了其中三项.

(1) 若成等比数列,求之间满足的等量关系;

(2) 他猜想:“在上述数列中存在一个子数列是等差数列”,为此,他研究了的大小关系,请你根据该同学的研究结果来判断上述猜想是否正确;

(3) 他又想:在首项为正整数,公差为正整数的无穷等差数列中是否存在成等比数列的子数列?请你就此问题写出一个正确命题,并加以证明.

 

查看答案和解析>>

(本题满分18分) 本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.
我们把定义在上,且满足(其中常数满足)的函数叫做似周期函数.
(1)若某个似周期函数满足且图像关于直线对称.求证:函数是偶函数;
(2)当时,某个似周期函数在时的解析式为,求函数的解析式;
(3)对于确定的时,,试研究似周期函数函数在区间上是否可能是单调函数?若可能,求出的取值范围;若不可能,请说明理由.

查看答案和解析>>

(本题满分18分) 本题共有3个小题,第1小题满分4分,第2小题满分6分. 第3小题满分8分.
(理)对于数列,从中选取若干项,不改变它们在原来数列中的先后次序,得到的数列称为是原来数列的一个子数列. 某同学在学习了这一个概念之后,打算研究首项为正整数,公比为正整数的无穷等比数列的子数列问题. 为此,他任取了其中三项.
(1) 若成等比数列,求之间满足的等量关系;
(2) 他猜想:“在上述数列中存在一个子数列是等差数列”,为此,他研究了的大小关系,请你根据该同学的研究结果来判断上述猜想是否正确;
(3) 他又想:在首项为正整数,公差为正整数的无穷等差数列中是否存在成等比数列的子数列?请你就此问题写出一个正确命题,并加以证明.

查看答案和解析>>

(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.

已知点是直角坐标平面内的动点,点到直线的距离为,到点的距离为,且.

(1)求动点P所在曲线C的方程;

(2)直线过点F且与曲线C交于不同两点AB(点AB不在x轴上),分别过AB点作直线的垂线,对应的垂足分别为,试判断点F与以线段为直径的圆的位置关系(指在圆内、圆上、圆外等情况);

(3)记,,(AB、是(2)中的点),问是否存在实数,使成立.若存在,求出的值;若不存在,请说明理由.

进一步思考问题:若上述问题中直线、点、曲线C:,则使等式成立的的值仍保持不变.请给出你的判断            (填写“不正确”或“正确”)(限于时间,这里不需要举反例,或证明).

查看答案和解析>>


同步练习册答案