如图所示.在x轴上方存在着垂直于纸面向里.磁感应强度为B的匀强磁场.一个不计重力的带电粒子从坐标原点O处以速度v进入磁场.粒子进人磁场时的速度方向垂直于磁场且与x轴正方向成120° 角.若粒子穿过y轴正半轴后在磁场中到x轴的最大距离为a .则该粒子的比荷和所带电荷的正负是 A. .正电荷 B. .正电荷 C. .负电荷 D. .负电荷 查看更多

 

题目列表(包括答案和解析)

(2013•湖南)在平面直角坐标系xOy中,将从点M出发沿纵、横方向到达点N的任一路径称为M到N的一条“L路径”.如图所示的路径MM1M2M3N与路径MN1N都是M到N的“L路径”.某地有三个新建居民区,分别位于平面xOy内三点A(3,20),B(-10,0),C(14,0)处.现计划在x轴上方区域(包含x轴)内的某一点P处修建一个文化中心.
(I)写出点P到居民区A的“L路径”长度最小值的表达式(不要求证明);
(II)若以原点O为圆心,半径为1的圆的内部是保护区,“L路径”不能进入保护区,请确定点P的位置,使其到三个居民区的“L路径”长度之和最小.

查看答案和解析>>

如图所示,设抛物线C1:y2=4mx(m>0)的焦点为F2,且其准线与x轴交于F1,以F1,F2为焦点,离心率e=
12
的椭圆C2与抛物线C1在x轴上方的一个交点为P.
(1)当m=1时,求椭圆C2的方程;
(2)是否存在实数m,使得△PF1F2的三条边的边长是连续的自然数,若存在,求出这样的实数m;若不存在,请说明理由.

查看答案和解析>>

在平面直角坐标系xOy中,将从点M出发沿纵、横方向到达点N的任一路径成为M到N的一条“L路径”。如图所示的路径都是M到N的“L路径”。某地有三个新建的居民区,分别位于平面xOy内三点处。现计划在x轴上方区域(包含x轴)内的某一点P处修建一个文化中心。

(I)写出点P到居民区A的“L路径”长度最小值的表达式(不要求证明);

(II)若以原点O为圆心,半径为1的圆的内部是保护区,“L路径”不能进入保护区,请确定点P的位置,使其到三个居民区的“L路径”长度值和最小。

 

查看答案和解析>>

(1) 在直角坐标系xOy中,曲线的参数方程为为参数),M为上的动点,P点满足,点P的轨迹为曲线.已知在以O为极点,x轴的正半轴为极轴的极坐标系中,射线的异于极点的交点为A,与的异于极点的交点为B,求|AB|.

(2) 某旅游景点给游人准备了这样一个游戏,他制作了“迷尼游戏板”:在一块倾斜放置的矩形胶合板上钉着一个形如“等腰三角形”的八行铁钉,钉子之间留有空隙作为通道,自上而下第1行2个铁钉之间有1个空隙,第2行3个铁钉之间有2个空隙,…,第8行9个铁钉之间有8个空隙(如图所示).东方庄家的游戏规则是:游人在迷尼板上方口放人一球,每玩一次(放入一球就算玩一次)先付给庄家2元.若小球到达①②③④号球槽,分别奖4元、2元、0元、-2元.(一个玻璃球的滚动方式:通过第1行的空隙向下滚动,小球碰到第二行居中的铁钉后以相等的概率滚入第2行的左空隙或右空隙.以后小球按类似方式继续往下滚动,落入第8行的某一个空隙后,最后掉入迷尼板下方的相应球槽内).恰逢周末,某同学看了一个小时,留心数了数,有80人次玩.试用你学过的知识分析,这一小时内游戏庄家是赢是赔? 通过计算,你得到什么启示?

 

查看答案和解析>>

已知直线经过椭圆C:的左顶点A和上顶点D,椭圆C的右顶点为B,点S是椭圆C上位于x轴上方的动点,直线AS,BS与直线分别交于M,N两点,如图所示。
(1)求椭圆C的方程;
(2)求线段MN的长度的最小值;
(3)当线段MN的长度的最小时,在椭圆C上是否存在这样的点T,使得△TSB的面积为?若存在,确定点T的个数,若不存在,请说明理由。

查看答案和解析>>


同步练习册答案