7.已知m∈R.函数在[1.+∞)上是单调增函数.则m的最大值是A.0 B.1 C.2 D.3 查看更多

 

题目列表(包括答案和解析)

已知f(x)=x3-ax在[1,+∞)上是单调增函数,则a的最大值是
3
3

查看答案和解析>>

已知函数f(x)=|x+
1x
|

(1)判断函数f(x)的奇偶性;
(2)求证:函数f(x)在(0,1)上是单调减函数,在[1,+∞)上是单调增函数;
(3)用描点法画出函数f(x)的图象;根据图象写出函数f(x)的单调区间及值域.

查看答案和解析>>

9、已知a>0,函数f(x)=x3-ax在[1,+∞)上是单调增函数,则a的最大值是(  )

查看答案和解析>>

已知函数f(x)=
1
2
ax2+2x,g(x)=lnx.
(1)求函数y=xg(x)-2x的单调增区间.
(2)如果函数y=f(x)在[1,+∞)上是单调增函数,求a的取值范围;
(3)是否存在实数a>0,使得方程
g(x)
x
=f′(x)-(2a+1)在区间(
1
e
,e)内有且只有两个不相等的实数根?若存在,请求出a的取值范围;若不存在,请说明理由.

查看答案和解析>>

已知f(x)=x3-ax在[1,+∞)上是单调增函数,则a的最大值是(  )

查看答案和解析>>

一、选择题(60分)

题号

1

2

3

4

5

6

7

8

9

10

11

12

答案

A

B

D

C

B

(C

D

D

A

B

 

C

B

 

二、填空题(20分)

13.  15    14.5 15.   16.

三、解答题(70分)

17.(1)   ,∴,∴

           (5分)

(2)     

,∴,∴

                                                         (理10分)

18. (1)记“甲恰好投进两球”为事件A,则           (6分)

(2)记“甲比乙多投进两球”,其中“恰好甲投进两球且乙未投进”为事件,“恰好甲投进三球且乙投进一球”为事件,根据提议,互斥,(理12分)

19.(1)                     (6分)

(2)                                               (文12分)

(3)                                     (理12分)

20.(1)设数列的公比为,则

                                                                         (文6分,理4分)

(2)由(1)可知

所以数列是一个以为首项,1为公差的等差数列

                       (文12分,理8分)

(3)∵

∴当时,,即

  当时,,即

综上可知:时,时,       (理12分)

21. ⑴由已知

     

     所求双曲线C的方程为;

⑵设P点的坐标为,M,N的纵坐标分别为.

 

 

    

共线

同理

              

22.

(1)由题意得:

∴在;在;在

在此处取得极小值

由①②③联立得:

                                                         (6分)

(2)设切点Q

求得:,方程有三个根。

需:

故:

因此所求实数的取值范围为:                     (理12

 

 


同步练习册答案