7.已知抛物线.过原点作斜率1的直线交抛物线于第一象限内一点.又过点作斜率为的直线交抛物线于点.再过作斜率为的直线交抛物线于点..如此继续.一般地.过点作斜率为的直线交抛物线于点.设点. (Ⅰ)令.求证:数列是等比数列.并求数列的前项和为 解:(1)因为.在抛物线上.故①②.又因为直线的斜率为.即.①②代入可得. 故是以 为公比的等比数列,. [问题5]数列与算法 查看更多

 

题目列表(包括答案和解析)

已知抛物线的顶点在坐标原点O,焦点F在x轴正半轴上,倾斜角为锐角的直线l过F点,设直线l与抛物线交于A、B两点,与抛物线的准线交于M点,
MF
FB
(λ>0)
(1)若λ=1,求直线l斜率
(2)若点A、B在x轴上的射影分别为A1,B1且|
B1F
|,|
OF
|,2|
A1F
|成等差数列求λ的值
(3)设已知抛物线为C1:y2=x,将其绕顶点按逆时针方向旋转90°变成C1′.圆C2:x2+(y-4)2=1的圆心为点N.已知点P是抛物线C1′上一点(异于原点),过点P作圆C2的两条切线,交抛物线C′1于T,S,两点,若过N,P两点的直线l垂直于TS,求直线l的方程.

查看答案和解析>>

已知抛物线C:y2=2px(p>0)过点A(1,-2).
(1)求抛物线C的标准方程,并求其准线方程;
(2)是否存在平行于OA(O为坐标原点)的直线l,使得直线OA与l的距离等于
5
5
?若存在,求直线l的方程,若不存在,说明理由.
(3)过抛物线C的焦点F作两条斜率存在且互相垂直的直线l1,l2,设l1与抛物线C相交于点M,N,l2与抛物线C相交于点D,E,求
MD
NE
的最小值.

查看答案和解析>>

已知抛物线C:y2=4x,P(x0,y0)(y0>0)为抛物线上一点,Q为P关于x轴对称的点,O为坐标原点.
(1)若S△POQ=2,求P点的坐标;
(2)若过满足(1)中的点P作直线PA,PB交抛物线C于A,B两点,且斜率分别为k1,k2,且k1k2=4,求证:直线AB过定点,并求出该定点坐标.

查看答案和解析>>

已知抛物线y2=2px(p>0)的焦点为F,过F且斜率为
3
直线与抛物线在x轴上方的交点为M,过M作y轴的垂线,垂足为N,O为坐标原点,若四边形OFMN的面积为4
3

(1)求抛物线的方程;
(2)若P,Q是抛物线上异于原点O的两动点,且以线段PQ为直径的圆恒过原点O,求证:直线PQ过定点,并指出定点坐标.

查看答案和解析>>

已知抛物线C:y=x2,从原点O出发且斜率为k0的直线l0交抛物线C于一异于O点的点A1(x1,y1),过A1作一斜率为k1的直线l1交抛物线C于一异于A1的点A2(x2,y2)…,过An作斜率为kn的直线ln交抛物线C于一异于An的点An+1(xn+1,yn+1)且知kn=k0n+1(k0>0且k0≠1).
(1)求x1,x2以及xn与xn+1之间的递推关系式;
(2)求{xn}的通项公式.

查看答案和解析>>


同步练习册答案