28.若则函数的单调递减区间是 上述分析只是错误解题的一般性问题:后期应考期间.应做的是怎样才能有效地避免非智力因素失分.对照考点检查常见知识和公式.定理是否记住.大题的解题规范格式是掌握.并适当猜测大题(6题)可能考查形式.适当休息.劳逸结合.消除恐惧心理.高考文科数学并不难.保持良好心态.心态好自信高考就一定能考得好. 查看更多

 

题目列表(包括答案和解析)

已知函数处取得极值2.

⑴ 求函数的解析式;

⑵ 若函数在区间上是单调函数,求实数m的取值范围;

【解析】第一问中利用导数

又f(x)在x=1处取得极值2,所以

所以

第二问中,

因为,又f(x)的定义域是R,所以由,得-1<x<1,所以f(x)在[-1,1]上单调递增,在上单调递减,当f(x)在区间(m,2m+1)上单调递增,则有,得

解:⑴ 求导,又f(x)在x=1处取得极值2,所以,即,所以…………6分

⑵ 因为,又f(x)的定义域是R,所以由,得-1<x<1,所以f(x)在[-1,1]上单调递增,在上单调递减,当f(x)在区间(m,2m+1)上单调递增,则有,得,                …………9分

当f(x)在区间(m,2m+1)上单调递减,则有 

                                                …………12分

.综上所述,当时,f(x)在(m,2m+1)上单调递增,当时,f(x)在(m,2m+1)上单调递减;则实数m的取值范围是

 

查看答案和解析>>

已知函数f(x)=ex-ax,其中a>0.

(1)若对一切x∈R,f(x) 1恒成立,求a的取值集合;

(2)在函数f(x)的图像上去定点A(x1, f(x1)),B(x2, f(x2))(x1<x2),记直线AB的斜率为k,证明:存在x0∈(x1,x2),使恒成立.

【解析】解:.

单调递减;当单调递增,故当时,取最小值

于是对一切恒成立,当且仅当.        ①

时,单调递增;当时,单调递减.

故当时,取最大值.因此,当且仅当时,①式成立.

综上所述,的取值集合为.

(Ⅱ)由题意知,

,则.当时,单调递减;当时,单调递增.故当

从而

所以因为函数在区间上的图像是连续不断的一条曲线,所以存在使成立.

【点评】本题考查利用导函数研究函数单调性、最值、不等式恒成立问题等,考查运算能力,考查分类讨论思想、函数与方程思想等数学方法.第一问利用导函数法求出取最小值对一切x∈R,f(x) 1恒成立转化为从而得出求a的取值集合;第二问在假设存在的情况下进行推理,然后把问题归结为一个方程是否存在解的问题,通过构造函数,研究这个函数的性质进行分析判断.

 

查看答案和解析>>


同步练习册答案