(I)求证:平面, 查看更多

 

题目列表(包括答案和解析)

精英家教网如图,四棱锥P-ABCD中,PA⊥底面ABCD,四边形ABCD中,AB⊥AD,AB+AD=4,CD=
2
,∠CDA=45°.
(I)求证:平面PAB⊥平面PAD;
(II)设AB=AP.
(i)若直线PB与平面PCD所成的角为30°,求线段AB的长;
(ii)在线段AD上是否存在一个点G,使得点G到点P,B,C,D的距离都相等?说明理由.

查看答案和解析>>

如图,四边形ABCD为正方形,PD⊥平面ABCD,EC∥PD,且PD=2EC.
(I)求证:平面PBE⊥平面PBD;
(II)若二面角P-AB-D为45°,求直线PA与平面PBE所成角的正弦值.

查看答案和解析>>

精英家教网如图:直平行六面体ABCD-A1B1C1D1,底面ABCD是边长为2a的菱形,∠BAD=60°,E为AB中点,二面角A1-ED-A为60°.
(I)求证:平面A1ED⊥平面ABB1A1
(II)求二面角A1-ED-C1的余弦值;
(III)求点C1到平面A1ED的距离.

查看答案和解析>>

如图,四棱锥P-ABCD的底面为矩形,侧面PAD是正三角形,且侧面PAD⊥底面ABCD
(I)求证:平面PAD⊥平面PCD
(II)试在平面PCD上确定一点 E 的位置,使|
AE
|最小,并说明理由;
(III)当AD=AB时,求二面角A-PC-D的余弦值.

查看答案和解析>>

如图,多面体ABCD-EFG中,底面ABCD为正方形,GD∥FC∥AE,AE⊥平面ABCD,其正视图、俯视图如下:精英家教网
(I)求证:平面AEF⊥平面BDG;
(II)若存在λ>0使得
AK
=λ
AE
,二面角A-BG-K的大小为60°,求λ的值.

查看答案和解析>>

 

1.B    2 D.  3.B    4.C      5.C     6.C    7.B    8.C    9.D   10.B

11.D   12.B

13.240   14.1     15.  16. ①②③

17.(本题满分10分)

解:(Ⅰ)由

       

(Ⅱ)

同理:

   

.

18.(本题满分12分)

解:(Ⅰ)记“这批太空种子中的某一粒种子既发芽又发生基因突变”为事件,则.    

(Ⅱ)

19.(本题满分12分)

  (Ⅰ)∵,∴{}是公差为4的等差数列,

a1=1, =+4(n-1)=4n-3,∵an>0,∴an= 

(Ⅱ)bn=Sn+1Sn=an+12=,由bn<,得m>,

g(n)= ,∵g(n)= n∈N*上是减函数,

g(n)的最大值是g(1)=5,

m>5,存在最小正整数m=6,使对任意n∈N*bn<成立

20.(本题满分12分)

解法一:

(I)设的中点,连结,则四边形为正方形,

.故,即

学科网(Zxxk.Com)

平面,                                   

(II)由(I)知平面

平面

的中点, 连结,又,则

的中点,连结,则,.

为二面角的平面角.

连结,在中,

的中点,连结

中,

二面角的余弦值为

解法二:

(I)以为原点,所在直线分别为轴,轴,轴建立如图所示的空间直角坐标系,则,.

学科网(Zxxk.Com),

又因为 所以,平面.

(II)设为平面的一个法向量.

    取,则

,设为平面的一个法向量,

,得,则

的夹角为,二面角,显然为锐角,

,

21.(本题满分12分)    

解:(Ⅰ) ,上是增函数,在上是减函数,

∴当时, 取得极大值.

.

,,

则有 ,

递增

极大值4

递减

极小值0

递增

所以,时,函数的极大值为4;极小值为0; 单调递增区间为.

(Ⅱ) 由(Ⅰ)知, ,的两个根分别为. ∵上是减函数,∴,即,

.

22.(本题满分12分)

解:(I)依题意,可知

 ,解得

∴椭圆的方程为

(II)直线与⊙相切,则,即

,得

∵直线与椭圆交于不同的两点

       ∴

,则

上单调递增          ∴.

 

 

 


同步练习册答案