(Ⅱ)求证:. 查看更多

 

题目列表(包括答案和解析)

16、如图,在直三棱柱ABC-A1B1C1中,∠ABC=90°,E,F,G分别是AA1,AC,BB1的中点,且CG⊥C1G.
(Ⅰ)求证:CG∥平面BEF;
(Ⅱ)求证:平面BEF⊥平面A1C1G.

查看答案和解析>>

(Ⅰ)已知函数f(x)=
x
x+1
.数列{an}满足:an>0,a1=1,且
an+1
=f(
an
)
,记数列{bn}的前n项和为Sn,且Sn=
2
2
[
1
an
+(
2
+1)n]
.求数列{bn}的通项公式;并判断b4+b6是否仍为数列{bn}中的项?若是,请证明;否则,说明理由.
(Ⅱ)设{cn}为首项是c1,公差d≠0的等差数列,求证:“数列{cn}中任意不同两项之和仍为数列{cn}中的项”的充要条件是“存在整数m≥-1,使c1=md”.

查看答案和解析>>

精英家教网过抛物线x2=4y的焦点F作倾斜角为α的直线交抛物线于P、Q两点,过点P作抛物线的切线l交y轴于点T,过点P作切线l的垂线交y轴于点N.
(Ⅰ)求证:|NF|=|TF|=|PF|;
(Ⅱ)若cosα=
45
,求此抛物线与线段PQ所围成的封闭图形的面积.

查看答案和解析>>

已知数列an的前n项和Sn满足条件2Sn=3(an-1),其中n∈N*
(1)求证:数列an成等比数列;
(2)设数列bn满足bn=log3an.若 tn=
1bnbn+1
,求数列tn的前n项和.

查看答案和解析>>

精英家教网如图,四棱锥S-ABCD的底面是矩形,SA⊥底面ABCD,P为BC边的中点,SB与平面ABCD所成的角为45°,且AD=2,SA=1.
(Ⅰ)求证:PD⊥平面SAP,
(Ⅱ)求二面角A-SD-P的大小的正切值.

查看答案和解析>>

 

1.B    2 D.  3.B    4.C      5.C     6.C    7.B    8.C    9.D   10.B

11.D   12.B

13.240   14.1     15.  16. ①②③

17.(本题满分10分)

解:(Ⅰ)由

       

(Ⅱ)

同理:

   

.

18.(本题满分12分)

解:(Ⅰ)记“这批太空种子中的某一粒种子既发芽又发生基因突变”为事件,则.    

(Ⅱ)

19.(本题满分12分)

  (Ⅰ)∵,∴{}是公差为4的等差数列,

a1=1, =+4(n-1)=4n-3,∵an>0,∴an= 

(Ⅱ)bn=Sn+1Sn=an+12=,由bn<,得m>,

g(n)= ,∵g(n)= n∈N*上是减函数,

g(n)的最大值是g(1)=5,

m>5,存在最小正整数m=6,使对任意n∈N*bn<成立

20.(本题满分12分)

解法一:

(I)设的中点,连结,则四边形为正方形,

.故,即

学科网(Zxxk.Com)

平面,                                   

(II)由(I)知平面

平面

的中点, 连结,又,则

的中点,连结,则,.

为二面角的平面角.

连结,在中,

的中点,连结

中,

二面角的余弦值为

解法二:

(I)以为原点,所在直线分别为轴,轴,轴建立如图所示的空间直角坐标系,则,.

学科网(Zxxk.Com),

又因为 所以,平面.

(II)设为平面的一个法向量.

    取,则

,设为平面的一个法向量,

,得,则

的夹角为,二面角,显然为锐角,

,

21.(本题满分12分)    

解:(Ⅰ) ,上是增函数,在上是减函数,

∴当时, 取得极大值.

.

,,

则有 ,

递增

极大值4

递减

极小值0

递增

所以,时,函数的极大值为4;极小值为0; 单调递增区间为.

(Ⅱ) 由(Ⅰ)知, ,的两个根分别为. ∵上是减函数,∴,即,

.

22.(本题满分12分)

解:(I)依题意,可知

 ,解得

∴椭圆的方程为

(II)直线与⊙相切,则,即

,得

∵直线与椭圆交于不同的两点

       ∴

,则

上单调递增          ∴.

 

 

 


同步练习册答案