题目列表(包括答案和解析)
对于电容的定义式C=,以下说法中正确的是( )
A.一只电容器所带有的电荷量越多,其电容C就越大 |
B.电容器两板间的电压越低,则其电容C越小 |
C.对于固定的电容器,它所充电荷量跟它两极板间所加电压的比值保持不变 |
D.如果一个电容器两极板间没有电压,就没有充电荷量,也就没有电容 |
对于电容的定义式C=,以下说法中正确的是( )
A.一只电容器所带有的电荷量越多,其电容C就越大
B.电容器两板间的电压越低,则其电容C越小
C.对于固定的电容器,它所充电荷量跟它两极板间所加电压的比值保持不变
D.如果一个电容器两极板间没有电压,就没有充电荷量,也就没有电容
对于电容的定义式C=,以下说法中正确的是
A.一只电容器所带有的电荷量越多,其电容C就越大
B.电容器两板间的电压越低,则其电容C越小
C.对于固定的电容器,它所充电荷量跟它两极板间所加电压的比值保持不变
D.如果一个电容器两极板间没有电压,就没有充电荷量,也就没有电容
第十部分 磁场
第一讲 基本知识介绍
《磁场》部分在奥赛考刚中的考点很少,和高考要求的区别不是很大,只是在两处有深化:a、电流的磁场引进定量计算;b、对带电粒子在复合场中的运动进行了更深入的分析。
一、磁场与安培力
1、磁场
a、永磁体、电流磁场→磁现象的电本质
b、磁感强度、磁通量
c、稳恒电流的磁场
*毕奥-萨伐尔定律(Biot-Savart law):对于电流强度为I 、长度为dI的导体元段,在距离为r的点激发的“元磁感应强度”为dB 。矢量式d= k,(d表示导体元段的方向沿电流的方向、为导体元段到考查点的方向矢量);或用大小关系式dB = k结合安培定则寻求方向亦可。其中 k = 1.0×10?7N/A2 。应用毕萨定律再结合矢量叠加原理,可以求解任何形状导线在任何位置激发的磁感强度。
毕萨定律应用在“无限长”直导线的结论:B = 2k ;
*毕萨定律应用在环形电流垂直中心轴线上的结论:B = 2πkI ;
*毕萨定律应用在“无限长”螺线管内部的结论:B = 2πknI 。其中n为单位长度螺线管的匝数。
2、安培力
a、对直导体,矢量式为 = I;或表达为大小关系式 F = BILsinθ再结合“左手定则”解决方向问题(θ为B与L的夹角)。
b、弯曲导体的安培力
⑴整体合力
折线导体所受安培力的合力等于连接始末端连线导体(电流不变)的的安培力。
证明:参照图9-1,令MN段导体的安培力F1与NO段导体的安培力F2的合力为F,则F的大小为
F =
= BI
= BI
关于F的方向,由于ΔFF2P∽ΔMNO,可以证明图9-1中的两个灰色三角形相似,这也就证明了F是垂直MO的,再由于ΔPMO是等腰三角形(这个证明很容易),故F在MO上的垂足就是MO的中点了。
证毕。
由于连续弯曲的导体可以看成是无穷多元段直线导体的折合,所以,关于折线导体整体合力的结论也适用于弯曲导体。(说明:这个结论只适用于匀强磁场。)
⑵导体的内张力
弯曲导体在平衡或加速的情形下,均会出现内张力,具体分析时,可将导体在被考查点切断,再将被切断的某一部分隔离,列平衡方程或动力学方程求解。
c、匀强磁场对线圈的转矩
如图9-2所示,当一个矩形线圈(线圈面积为S、通以恒定电流I)放入匀强磁场中,且磁场B的方向平行线圈平面时,线圈受安培力将转动(并自动选择垂直B的中心轴OO′,因为质心无加速度),此瞬时的力矩为
M = BIS
几种情形的讨论——
⑴增加匝数至N ,则 M = NBIS ;
⑵转轴平移,结论不变(证明从略);
⑶线圈形状改变,结论不变(证明从略);
*⑷磁场平行线圈平面相对原磁场方向旋转α角,则M = BIScosα ,如图9-3;
证明:当α = 90°时,显然M = 0 ,而磁场是可以分解的,只有垂直转轴的的分量Bcosα才能产生力矩…
⑸磁场B垂直OO′轴相对线圈平面旋转β角,则M = BIScosβ ,如图9-4。
证明:当β = 90°时,显然M = 0 ,而磁场是可以分解的,只有平行线圈平面的的分量Bcosβ才能产生力矩…
说明:在默认的情况下,讨论线圈的转矩时,认为线圈的转轴垂直磁场。如果没有人为设定,而是让安培力自行选定转轴,这时的力矩称为力偶矩。
二、洛仑兹力
1、概念与规律
a、 = q,或展开为f = qvBsinθ再结合左、右手定则确定方向(其中θ为与的夹角)。安培力是大量带电粒子所受洛仑兹力的宏观体现。
b、能量性质
由于总垂直与确定的平面,故总垂直 ,只能起到改变速度方向的作用。结论:洛仑兹力可对带电粒子形成冲量,却不可能做功。或:洛仑兹力可使带电粒子的动量发生改变却不能使其动能发生改变。
问题:安培力可以做功,为什么洛仑兹力不能做功?
解说:应该注意“安培力是大量带电粒子所受洛仑兹力的宏观体现”这句话的确切含义——“宏观体现”和“完全相等”是有区别的。我们可以分两种情形看这个问题:(1)导体静止时,所有粒子的洛仑兹力的合力等于安培力(这个证明从略);(2)导体运动时,粒子参与的是沿导体棒的运动v1和导体运动v2的合运动,其合速度为v ,这时的洛仑兹力f垂直v而安培力垂直导体棒,它们是不可能相等的,只能说安培力是洛仑兹力的分力f1 = qv1B的合力(见图9-5)。
很显然,f1的合力(安培力)做正功,而f不做功(或者说f1的正功和f2的负功的代数和为零)。(事实上,由于电子定向移动速率v1在10?5m/s数量级,而v2一般都在10?2m/s数量级以上,致使f1只是f的一个极小分量。)
☆如果从能量的角度看这个问题,当导体棒放在光滑的导轨上时(参看图9-6),导体棒必获得动能,这个动能是怎么转化来的呢?
若先将导体棒卡住,回路中形成稳恒的电流,电流的功转化为回路的焦耳热。而将导体棒释放后,导体棒受安培力加速,将形成感应电动势(反电动势)。动力学分析可知,导体棒的最后稳定状态是匀速运动(感应电动势等于电源电动势,回路电流为零)。由于达到稳定速度前的回路电流是逐渐减小的,故在相同时间内发的焦耳热将比导体棒被卡住时少。所以,导体棒动能的增加是以回路焦耳热的减少为代价的。
2、仅受洛仑兹力的带电粒子运动
a、⊥时,匀速圆周运动,半径r = ,周期T =
b、与成一般夹角θ时,做等螺距螺旋运动,半径r = ,螺距d =
这个结论的证明一般是将分解…(过程从略)。
☆但也有一个问题,如果将分解(成垂直速度分量B2和平行速度分量B1 ,如图9-7所示),粒子的运动情形似乎就不一样了——在垂直B2的平面内做圆周运动?
其实,在图9-7中,B1平行v只是一种暂时的现象,一旦受B2的洛仑兹力作用,v改变方向后就不再平行B1了。当B1施加了洛仑兹力后,粒子的“圆周运动”就无法达成了。(而在分解v的处理中,这种局面是不会出现的。)
3、磁聚焦
a、结构:见图9-8,K和G分别为阴极和控制极,A为阳极加共轴限制膜片,螺线管提供匀强磁场。
b、原理:由于控制极和共轴膜片的存在,电子进磁场的发散角极小,即速度和磁场的夹角θ极小,各粒子做螺旋运动时可以认为螺距彼此相等(半径可以不等),故所有粒子会“聚焦”在荧光屏上的P点。
4、回旋加速器
a、结构&原理(注意加速时间应忽略)
b、磁场与交变电场频率的关系
因回旋周期T和交变电场周期T′必相等,故 =
c、最大速度 vmax = = 2πRf
5、质谱仪
速度选择器&粒子圆周运动,和高考要求相同。
第二讲 典型例题解析
一、磁场与安培力的计算
【例题1】两根无限长的平行直导线a、b相距40cm,通过电流的大小都是3.0A,方向相反。试求位于两根导线之间且在两导线所在平面内的、与a导线相距10cm的P点的磁感强度。
【解说】这是一个关于毕萨定律的简单应用。解题过程从略。
【答案】大小为8.0×10?6T ,方向在图9-9中垂直纸面向外。
【例题2】半径为R ,通有电流I的圆形线圈,放在磁感强度大小为B 、方向垂直线圈平面的匀强磁场中,求由于安培力而引起的线圈内张力。
【解说】本题有两种解法。
方法一:隔离一小段弧,对应圆心角θ ,则弧长L = θR 。因为θ →
【选做题】本题包括A、B、C三小题,请选定其中两题,并在答题卡相应的答题区域内作答.若三题都做,则按A、B两题评分.
A.(选修模块3—3)(12分)
(1)(4分)判断以下说法的正误,在相应的括号内打“√”或“×”。
(A)用手捏面包,面包体积会缩小,说明分子之间有间隙。( )
(B)温度相同的氢气和氧气,氢气分子和氧气分子的平均速率相同。( )
(C)夏天荷叶上小水珠呈球状,是由于液体表面张力使其表面积具有收缩到最小趋势的缘故。( )
(D)自然界中进行的一切与热现象有关的宏观过程都具有方向性。( )
(2)(4分)在“用油膜法估测分子的大小”的实验中,有下列操作步骤,请补充实验步骤的内容及实验步骤中的计算式:
(A)用滴管将浓度为的油酸酒精溶液逐滴滴入量筒,记下的油酸酒精溶液的滴数;
(B)将痱子粉末均匀地撒在浅盘内的水面上,用滴管吸取浓度为的油酸酒精溶液,逐滴向水面上滴入,直到油酸薄膜表面足够大,且不与器壁接触为止,记下滴入的滴数;
(C)________________▲________________;
(D)将画有油酸薄膜轮廓的玻璃板放在坐标纸上,以坐标纸上边长的正方形为单位,计算轮廓内正方形的个数;
(E)用上述测量的物理量可以估算出单个油酸分子的直径__▲____。
(3)如图所示,上端开口的光滑圆柱形气缸竖直放置,截面积为40cm2的活塞将
一定质量的气体和一形状不规则的固体A封闭在气缸内。在气缸内距缸底60cm
处设有卡环ab,使活塞只能向上滑动。开始时活塞搁在ab上,缸内气体的压
强等于大气压强为p0=1.0×105Pa,温度为300K。现缓慢加热汽缸内气体,当
温度缓慢升高为330K,活塞恰好离开ab;当温度缓慢升高为360K时,活塞上
升了4cm。求:
(1)活塞的质量;
(2)整个过程中气体对外界做的功。
B.(选修模块3—4)(12分)
(1)(4分)判断以下说法的正误,在相应的括号内打“√”或“×”。
(A)光速不变原理是狭义相对论的两个基本假设之一。( )
(B)拍摄玻璃橱窗内的物品时,往往在镜头前加一个偏振片以增加透射光的强度。( )
(C)光在介质中的速度大于光在真空中的速度。( )
(D)变化的电场一定产生变化的磁场;变化的磁场一定产生变化的电场。( )
(2)(4分)如图为一横波发生器的显示屏,可以显示出波由0点从左向右传播的图像,屏上每一小格长度为1cm。在t=0时刻横波发生器上能显示的波形如图所示。因为显示屏的局部故障,造成从水平位置A到B之间(不包括A、B两处)的波形无法被观察到(故障不影响波在发生器内传播)。此后的时间内,观察者看到波形相继传经B、C处,在t=5秒时,观察者看到C处恰好第三次(从C开始振动后算起)出现平衡位置,则该波的波速可能是
(A)3.6cm/s (B)4.8cm/s
(C)6cm/s (D)7.2cm/s
(3)(4分)如图所示,某同学用插针法测定一半圆形玻璃砖的折射率。在平铺的白纸上垂直纸面插大头针、确定入射光线,并让入射光线过圆心,在玻璃砖(图中实线部分)另一侧垂直纸面插大头针,使挡住、的像,连接。图中为分界面,虚线半圆与玻璃砖对称,、分别是入射光线、折射光线与圆的交点,、均垂直于法线并分别交法线于、点。设的长度为,的长度为,的长度为,的长度为,求:
①为较方便地表示出玻璃砖的折射率,需用刻度尺测量(用上述给
出量的字母表示),
②玻璃砖的折射率
C.(选修模块3—5)(12分)
(1)下列说法中正确的是___▲_____
(A)X射线是处于激发态的原子核辐射出的
(B)放射性元素发生一次β衰变,原子序数增加1
(C)光电效应揭示了光具有粒子性,康普顿效应揭示了光具有波动性
(D)原子核的半衰期不仅与核内部自身因素有关,还与原子所处的化学状态
有关
(2)氢原子的能级如图所示,当氢原子从n=4向n=2的能级跃迁时,辐射的光
子照射在某金属上,刚好能发生光电效应,则该金属的逸出功为 ▲ eV。
现有一群处于n=5的能级的氢原子向低能级跃迁,在辐射出的各种频率的
光子中,能使该金属发生光电效应的频率共有 ▲ 种。
(3)如图,质量为m的小球系于长L=0.8m的轻绳末端。绳的另一端
系于O点。将小球移到轻绳水平位置后释放,小球摆到最低点A
时,恰与原静止于水平面上的物块P相碰。碰后小球回摆,上升的
最高点为B,A、B的高度差为h=0.2m。已知P的质量为M=3m,
P与水平面间的动摩擦因数为μ=0.25,小球与P的相互作用时间
极短。求P沿水平面滑行的距离。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com