9.已知正方体的棱长为2.则四面体在平面上的正投影的面积为 ( ) A.4 B.3 C.2 D.1 查看更多

 

题目列表(包括答案和解析)

已知正四棱锥S-ABCD的所有棱长均为
2
,则过该棱锥的顶点S及底面正方形各边中点的球的体积为
 

查看答案和解析>>

对于下列命题:
①已知集合A={正四棱柱},B={长方体},则A∩B=B;
②函数y=
1
lgx
在(0,+∞)为单调函数;
③在平面直角坐标系内,点M(|a|,|a-3|)与N(cosα,sinα)在直线x+y-2=0的异侧;
④若
1
a
<1
,则a<0或a>1;
⑤互为反函数的两个不同函数的图象若有交点,则交点一定在直线y=x上.其中正确命题的序号为
 
.(写出所有正确命题的序号)

查看答案和解析>>

对于下列命题:
①已知集合A={正四棱柱},B={长方体},则A∩B=B;
②函数y=
1
lgx
在(0,+∞)为单调函数;
③在平面直角坐标系内,点M(|a|,|a-3|)与N(cosα,sinα)在直线x+y-2=0的异侧;
④若
1
a
<1
,则a<0或a>1;
⑤互为反函数的两个不同函数的图象若有交点,则交点一定在直线y=x上.其中正确命题的序号为______.(写出所有正确命题的序号)

查看答案和解析>>

拓展探究题
(1)已知两个圆:①x2+y2=1;②x2+(y-3)2=1,则由①式减去②式可得两圆的对称轴方程.将上述命题在曲线仍为圆的情况下加以推广,即要求得到一个更一般的命题,而已知命题应成为所推广命题的一个特例.推广的命题为
已知两个圆:①(x-a)2+(y-b)2=r2;②(x-c)2+(y-d)2=r2,则由①式减去②式可得两圆的对称轴方程
已知两个圆:①(x-a)2+(y-b)2=r2;②(x-c)2+(y-d)2=r2,则由①式减去②式可得两圆的对称轴方程

(2)平面几何中有正确命题:“正三角形内任意一点到三边的距离之和等于定值,大小为边长的
3
2
倍”,请你写出此命题在立体几何中类似的真命题:
正四面体内任意一点到四个面的距离之和是一个定值,大小为棱长的
6
3
正四面体内任意一点到四个面的距离之和是一个定值,大小为棱长的
6
3

查看答案和解析>>

有一塔形几何体由若干个正方体构成,构成方式如图所示,上层正方体下底面的四个顶点是下层正方体上底面各边的中点.已知最底层正方体的棱长为2,且该塔形的表面积(含最底层正方体的底面面积)超过39,则该塔形中正方体的个数至少是___________.

 

查看答案和解析>>


同步练习册答案