当直线AB斜率存在且不为0时.设.代入得 查看更多

 

题目列表(包括答案和解析)

已知F是椭圆的左焦点,A是椭圆短轴上的一个顶点,椭圆的离心率为,点B在x轴上,AB⊥AF,A、B、F三点确定的圆C恰好与直线相切.
(Ⅰ)求椭圆的方程;
(Ⅱ)设O为椭圆的中心,是否存在过F点,斜率为k(k∈R,l≠0)且交椭圆于M、N两点的直线,当从O点引出射线经过MN的中点P,交椭圆于点Q时,有成立.如果存在,则求k的值;如果不存在,请说明理由.

查看答案和解析>>

已知F是椭圆的左焦点,A是椭圆短轴上的一个顶点,椭圆的离心率为,点B在x轴上,AB⊥AF,A、B、F三点确定的圆C恰好与直线x+y+3=0相切.

(Ⅰ)求椭圆的方程;

(Ⅱ)设O为椭圆的中心,是否存在过F点,斜率为k(k∈R,l≠0)且交椭圆于M、N两点的直线,当从O点引出射线经过MN的中点P,交椭圆于点Q时,有成立.如果存在,则求k的值;如果不存在,请说明理由.

查看答案和解析>>

已知函数f(x)=ex-ax,其中a>0.

(1)若对一切x∈R,f(x) 1恒成立,求a的取值集合;

(2)在函数f(x)的图像上去定点A(x1, f(x1)),B(x2, f(x2))(x1<x2),记直线AB的斜率为k,证明:存在x0∈(x1,x2),使恒成立.

【解析】解:.

单调递减;当单调递增,故当时,取最小值

于是对一切恒成立,当且仅当.        ①

时,单调递增;当时,单调递减.

故当时,取最大值.因此,当且仅当时,①式成立.

综上所述,的取值集合为.

(Ⅱ)由题意知,

,则.当时,单调递减;当时,单调递增.故当

从而

所以因为函数在区间上的图像是连续不断的一条曲线,所以存在使成立.

【点评】本题考查利用导函数研究函数单调性、最值、不等式恒成立问题等,考查运算能力,考查分类讨论思想、函数与方程思想等数学方法.第一问利用导函数法求出取最小值对一切x∈R,f(x) 1恒成立转化为从而得出求a的取值集合;第二问在假设存在的情况下进行推理,然后把问题归结为一个方程是否存在解的问题,通过构造函数,研究这个函数的性质进行分析判断.

 

查看答案和解析>>

(2012•上饶一模)已知F是椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左焦点,A是椭圆短轴上的一个顶点,椭圆的离心率为
1
2
,点B在x轴上,AB⊥AF,A、B、F三点确定的圆C恰好与直线x+
3
y+3=0
相切.
(Ⅰ)求椭圆的方程;
(Ⅱ)设O为椭圆的中心,是否存在过F点,斜率为k(k∈R,l≠0)且交椭圆于M、N两点的直线,当从O点引出射线经过MN的中点P,交椭圆于点Q时,有
OM
+
ON
=
OQ
成立.如果存在,则求k的值;如果不存在,请说明理由.

查看答案和解析>>

已知如图,直线(p>0),点F,P为平面上的动点,过P作直线l的垂线,垂足为点Q,且
(1)求动点P的轨迹C的方程;
(2)当p=2时,曲线C上存在不同的两点关于直线y=kx+3对称,求实数k满足的条件(写出关系式即可);
(3)设动点M (a,0),过M且斜率为1的直线与轨迹C交于不同的两点A,B,线段AB的中垂线与x轴交于点N,当|AB|≤2p时,求△NAB面积的最大值.

查看答案和解析>>


同步练习册答案