将直线方程代入得. 查看更多

 

题目列表(包括答案和解析)

已知平面直角坐标系中的点A(-1,0),B(3,2),求直线AB的方程的一个算法如下,请将其补充完整。
第一步,根据题意设直线AB的方程为y=kx+b
第二步,将A(-1,0),B(3,2)代入第一步所设的方程,得到-k+b=0①;3k+b=2②,
第三步,(    )
第四步,把第三步所得结果代入第一步所设的方程,得到
第五步,将第四步所得结果整理,得到方程x-2y+1=0。

查看答案和解析>>

某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:

零件的个数x(个)

2

3

4

5

加工的时间y(小时)

2.5

3

4

4.5

 

(1)在给定的坐标系中画出表中数据的散点图;

(2)求出y关于x的线性回归方程,并在坐标系中画出回归直线;

(3)试预测加工10个零件需要多少时间?

(注:)

【解析】第一问中利用数据描绘出散点图即可

第二问中,由表中数据得=52.5, =3.5,=3.5,=54,∴=0.7,=1.05得到回归方程。

第三问中,将x=10代入回归直线方程,得y=0.7×10+1.05=8.05(小时)得到结论。

(1)散点图如下图.

………………4分

(2)由表中数据得=52.5, =3.5,=3.5,=54,

=…=0.7,=…=1.05.

=0.7x+1.05.回归直线如图中所示.………………8分

(3)将x=10代入回归直线方程,得y=0.7×10+1.05=8.05(小时),

∴预测加工10个零件需要8.05小时

 

查看答案和解析>>

某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验如下:

零件的个数(个)

2

3

4

5

加工的时间(小时)

2.5

3

4

4.5

(1)在给定坐标系中画出表中数据的散点图;

(2)求关于的线性回归方程

(3)试预测加工10个零件需要多少时间?

【解析】第一问中,利用表格中的数据先作出散点图

第二问中,求解均值a,b的值,从而得到线性回归方程。

第三问,利用回归方程将x=10代入方程中,得到y的预测值。

解:(1)散点图(略)   (2分)

(2) (4分)

         (7分)

        (8分)∴回归直线方程:       (9分)

(3)当∴预测加工10个零件需要8.05小时。

 

查看答案和解析>>


同步练习册答案