(1)求证:为定值, 查看更多

 

题目列表(包括答案和解析)

  

(1)求证:为定值;

(2)求面积的最值.

查看答案和解析>>

定义:如果数列{an}的任意连续三项均能构成一个三角形的三边长,则称{an}为“三角形”数列.对于“三角形”数列{an},如果函数y=f(x)使得bn=f(an)仍为一个“三角形”数列,则称y=f(x)是数列{an}的“保三角形函数”,(n∈N).
(1)已知{an}是首项为2,公差为1的等差数列,若f(x)=kx,(k>1)是数列{an}的“保三角形函数”,求k的取值范围;
(2)已知数列{cn}的首项为2010,Sn是数列{cn}的前n项和,且满足4Sn+1-3Sn=8040,证明{cn}是“三角形”数列;
(3)[文科]若g(x)=lgx是(2)中数列{cn}的“保三角形函数”,问数列{cn}最多有多少项.
[理科]根据“保三角形函数”的定义,对函数h(x)=-x2+2x,x∈[1,A],和数列1,1+d,1+2d,(d>0)提出一个正确的命题,并说明理由.

查看答案和解析>>

定义y=log1+xf(x,y),f(x,y)=(1+x)y(x>0,y>0)
(1)比较f(1,3)与f(2,2)的大小;
(2)若e<x<y,证明:f(x-1,y)>f(y-1,x);
(3)设g(x)=f(1,log2(x3+ax2+bx+1))的图象为曲线C,曲线C在x0处的切线斜率为k,若x0∈(1,1-a),且存在实数b,使得k=-4,求实数a的取值范围.

查看答案和解析>>

定义:对于任意n∈N*,满足条件
an+an+2
2
an+1
且an≤M(M是与n无关的常数)的无穷数列an称为T数列.
(1)若an=-n2+9n(n∈N*),证明:数列an是T数列;
(2)设数列bn的通项为bn=50n-(
3
2
)n
,且数列bn是T数列,求常数M的取值范围;
(3)设数列cn=|
p
n
-1|
(n∈N*,p>1),问数列bn是否是T数列?请说明理由.

查看答案和解析>>

定义在D上的函数,如果满足:存在常数M>0,对任意x∈D都有|f(x)|≤M成立,则称f(x)是D上的有界函数.
(1)试判断函数f(x)=2sin(x+
π
6
)+3
在实数集R上,函数g(x)=x3+
3
x
[
1
3
,3]
上是不是有界函数?若是,请给出证明;若不是,请说出理由.
(2)若已知某质点的运动距离S与时间t的关系为S(t)=
1
4
t4+3lnt-at
,要使在t∈[
1
3
,3]
上每一时刻的瞬时速度的绝对值都不大于13,求实数a的取值范围.

查看答案和解析>>


同步练习册答案