如图是从上下底面处在水平状态下的棱长为的正方体中分离出来的. ⑴在图中的度数和它表示的角的真实度数都是.对吗? ⑵的真实度数是.对吗? ⑶设.如果用图示中这样一个装置来盛水.那么最多能盛多少体积的水? 查看更多

 

题目列表(包括答案和解析)

(2011•西山区模拟)为调查某市学生百米运动成绩,从该市学生中按照男女生比例随机抽取50名学生进行百米测试,学生成绩全部都介于13秒到18秒之间,将测试结果按如下方式分成五组,第一组[13,14),第二组[14,15)…第五组[17,18],如图是按上述分组方法得到的频率分布直方图.
性别
是否
达标
合计
达标 a=24  b=
6
6
30
30
不达标  c=
8
8
d=12
20
20
合计
32
32
18
18
n=50
(Ⅰ) 设m,n表示样本中两个学生的百米测试成绩,已知mn∈[13,14)∪[17,18]求事件“|m-n|>2”的概率;
(Ⅱ) 根据有关规定,成绩小于16秒为达标.
如果男女生使用相同的达标标准,则男女生达标情况如附表:
根据上表数据,能否有99%的把握认为“体育达标与性别有关”?若有,你能否提出一个更好的解决方法来?
附:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

P(K2≥K) 0.050 0.010 0.001
K 3.841 6.625 10.828

查看答案和解析>>

(本大题满分13分)如图,现有一块半径为2m,圆心角为的扇形铁皮,欲从其中裁剪出一块内接五边形,使点弧上,点分别在半径上,四边形是矩形,点在弧上,点在线段上,四边形是直角梯形.现有如下裁剪方案:先使矩形的面积达到最大,在此前提下,再使直角梯形的面积也达到最大.

(Ⅰ)设,当矩形的面积最大时,求的值;

(Ⅱ)求按这种裁剪方法的原材料利用率.

 

查看答案和解析>>

(本小题满分12分)

为调查某市学生百米运动成绩,从该市学生中按照男女生比例随机抽取50名学生进行百米测试,学生成绩全部都介于13秒到18秒之间,将测试结果按如下方式分成五组,第一组,第二组……第五组,如图是按上述分组方法得到的频率分布直方图.

(Ⅰ)求这组数据的众数和中位数(精确到0.1);

( II )根据有关规定,成绩小于16秒为达标.

(ⅰ)用样本估计总体,某班有学生45人,设

为达标人数,求的数学期望与方差.

    (ⅱ)如果男女生使用相同的达标标准,则男女

生达标情况如下表

性别

是否达标

合计

达标

______

_____

不达标

_____

_____

合计

______

______

 

根据上表数据,能否有99%的把握认为“体育达标与性别有关”?若有,你能否提出一个更好的解决方法来?

 

查看答案和解析>>

本小题满分12分)

为调查某市学生百米运动成绩,从该市学生中按照男女生比例随机抽取50名学生进行百米测试,学生成绩全部都介于13秒到18秒之间,将测试结果按如下方式分成五组,第一组,第二组……第五组,如图是按上述分组方法得到的频率分布直方图.

(Ⅰ)求这组数据的众数和中位数(精确到0.1);

(II)设表示样本中两个学生的百米测

试成绩,已知

求事件“”的概率.

(Ⅲ) 根据有关规定,成绩小于16秒为达标.

如果男女生使用相同的达标标准,则男女生达标情况如下表

性别

是否达标

合计

达标

______

_____

不达标

_____

_____

合计

______

______

根据上表数据,能否有99%的把握认为“体育达标与性别有关”?若有,你能否提出一个更好的解决方法来?

 

查看答案和解析>>

为调查某市学生百米运动成绩,从该市学生中按照男女生比例随机抽取50名学生进行百米测试,学生成绩全部都介于13秒到18秒之间,将测试结果按如下方式分成五组,第一组,第二组……第五组,如图是按上述分组方法得到的频率分布直方图。

 

 

(Ⅰ) 在第一组和第五组内任取两个学生,记这两人的百米测试成绩分别为

求事件“”的概率;

(Ⅱ) 根据有关规定,成绩小于16秒为达标.如果男女生使用相同的达标

标准,则男女生达标情况如附表:

 

 

性别

是否达标

合计

达标

___

_____

不达标

___

_____

合计

______

______

 

 

 

 

完成上述2×2列联表,根据上表数据,能否有99%的把握认为“体育达标与性别有关”?若有,你能否提出一个更好的解决方法来?

附:

 

   

 

 

查看答案和解析>>


同步练习册答案