解: (1) ,两边加得: , 是以2为公比, 为首项的等比数列. --① 由两边减得: 是以 为公比, 为首项的等比数列. --② ①-②得: 所以,所求通项为----5分 (2) 当为偶数时, 当为奇数时,,,又为偶数 由(1)知, --------10分 (3)证明: 又 --12分 -------14分 查看更多

 

题目列表(包括答案和解析)

(1)方程组
x+y=2
x-y-5=0
的解集用列举法表示为
{(
7
2
,-
3
2
)}
{(
7
2
,-
3
2
)}
.用描述法表示为
{(x,y)|
x+y=2
x-y=5
,x,y∈R
}
{(x,y)|
x+y=2
x-y=5
,x,y∈R
}

(2)两边长分别为3,5的三角形中,第三条边可取的整数的集合用列举法表示为
{3,4,5,6,7}
{3,4,5,6,7}
,用描述法表示为
{x|2<x<8,x∈N}
{x|2<x<8,x∈N}

查看答案和解析>>

阅读不等式5x≥4x+1的解法:
解:由5x≥4x+1,两边同除以5x可得1≥(
4
5
)x+(
1
5
)x

由于0<
1
5
4
5
<1
,显然函数f(x)=(
4
5
x+(
1
5
x在R上为单调减函数,
f(1)=
4
5
+
1
5
=1
,故当x>1时,有f(x)=(
4
5
x+(
1
5
x<f(x)=1
所以不等式的解集为{x|x≥1}.
利用解此不等式的方法解决以下问题:
(1)解不等式:9x>5x+4x
(2)证明:方程5x+12x=13x有唯一解,并求出该解.

查看答案和解析>>

先阅读下面的文字:“求
1+
1+
1+…
的值时,采用了如下的方式:令
1+
1+
1+…
=x
,则有x=
1+x
,两边平方,得1+x=x2,解得x=
1+
5
2
(负值已舍去)”.可用类比的方法,求2+
1
2+
1
2+…
的值为
1+
2
1+
2

查看答案和解析>>

(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评阅记分)
A.(不等式选做题)不等式|
x+1
x-1
|≥1
的解集是
(-∞,0]
(-∞,0]

B.(几何证明选做题) 如图,以AB=4为直径的圆与△ABC的两边分别交于E,F两点,∠ACB=60°,则EF=
2
2

C.(坐标系与参数方程选做题) 在极坐标中,已知点P为方程ρ(cosθ+sinθ)=1所表示的曲线上一动点,Q(2,
π
3
),则|PQ|的最小值为
6
2
6
2

查看答案和解析>>

已知,(其中

⑴求

⑵试比较的大小,并说明理由.

【解析】第一问中取,则;                         …………1分

对等式两边求导,得

,则得到结论

第二问中,要比较的大小,即比较:的大小,归纳猜想可得结论当时,

时,

时,

猜想:当时,运用数学归纳法证明即可。

解:⑴取,则;                         …………1分

对等式两边求导,得

,则。       …………4分

⑵要比较的大小,即比较:的大小,

时,

时,

时,;                              …………6分

猜想:当时,,下面用数学归纳法证明:

由上述过程可知,时结论成立,

假设当时结论成立,即

时,

时结论也成立,

∴当时,成立。                          …………11分

综上得,当时,

时,

时, 

 

查看答案和解析>>


同步练习册答案