<<2.∴1<<.同理可得.1<<.猜想1<<().--------下面用数学归纳法证明:(1)当n=2时.前面已证: 查看更多

 

题目列表(包括答案和解析)

设集合M是满足下列条件的函数f(x)的集合:①f(x)的定义域为R;②存在a<b,使f(x)在(-∞,a),(b,+∞)上分别单调递增,在(a,b)上单调递减.
(I)设f1(x)=x•|x-2|,f2(x)=x3-3x2+3x,判断f1(x),f2(x)是否在集合M中,并说明理由;
(II)求证:对任意的实数t,f(x)=
-x+tx2+1
都在集合M中;
(Ⅲ)是否存在可导函数f(x),使得f(x)与g(x)=f'(x)-x都在集合M中,并且有相同的单调区间?请说明理由.

查看答案和解析>>

定理:已知O,A,B三点不共线,若点P在直线AB上,且
OP
OA
λ2
OB
则λ12=1,类比该定理进行研究,可以得出:已知O、A、B三点不共线,若点P、O在直线AB同侧(点P不在直线AB上),且
OP
=λ1
OA
λ2
OB
,则
λ12<1
λ12<1

查看答案和解析>>

给出下列四个结论:

①合情推理是由特殊到一般的推理,得到的结论不一定正确,演绎推理是由一般到特殊的推理,得到的结论一定正确.

②甲、乙两同学各自独立地考察两个变量X、Y的线性相关关系时,发现两人对X的观察数据的平均值相等,都是s,对Y的观察数据的平均值也相等,都是t,各自求出的回归直线分别是l1、l2,则直线l1与l2必定相交于点(s,t).

③用独立性检验(2×2列联表法)来考察两个分类变量是否有关系时,算出的随机变量K2的值越大,说明“X与Y有关系”成立的可能性越大.

④命题P:x∈R,使得x2+x+1<0,则P:x∈R均有x2+x+1≥0.

其中结论正确的序号为________.(请写出你认为正确的所有结论的序号)

查看答案和解析>>

(理)如图a所示,某地为了开发旅游资源,欲修建一条连接风景点P和居民区O的公路,点P所在的山坡面与山脚所在水平面α所成的二面角为θ(0°<θ<90°),且sinθ=,点P到平面α的距离PH=0.4(km).沿山脚原有一段笔直的公路AB可供利用.从点O到山脚修路的造价为a万元/km,原有公路改建费用为万元/km.当山坡上公路长度为l km(1≤l≤2)时,其造价为(l2+1)a万元已知OA⊥AB,PB⊥AB,AB=1.5(km),OA=(km).

(1)在AB上求一点D,使沿折线PDAO修建公路的总造价最小;

(2)对于(1)中得到的点D,在DA上求一点E,使沿折线PDEO修建公路的总造价最小;

(3)在AB上是否存在两个不同的点D′,E′,使沿折线.PD′E′O修建公路的总造价小于(2)中得到的最小总造价?证明你的结论.

a)

第19题图

(文)如图b所示,直四棱柱ABCD-A1B1C1D1中,∠ADC=90°,△ABC为等边三角形,且AA1=AD=DC=2.

(1)求AC1与BC所成角的余弦值;

(2)求二面角C1-BD-C的大小;

(3)设M是BD上的点,当DM为何值时,D1M⊥平面A1C1D?并证明你的结论.

第19题图

查看答案和解析>>

对于数列{xn},从中选取若干项,不改变它们在原来数列中的先后次序,得到的数列称为是原来数列的一个子数列.某同学在学习了这一个概念之后,打算研究首项为a1,公差为d的无穷等差数列{an}的子数列问题,为此,他取了其中第一项a1,第三项a3和第五项a5
(1)若a1,a3,a5成等比数列,求d的值;
(2)在a1=1,d=3 的无穷等差数列{an}中,是否存在无穷子数列{bn},使得数列(bn)为等比数列?若存在,请给出数列{bn}的通项公式并证明;若不存在,说明理由;
(3)他在研究过程中猜想了一个命题:“对于首项为正整数a,公比为正整数q(q>1)的无穷等比数列{cn},总可以找到一个子数列{bn},使得{dn}构成等差数列”.于是,他在数列{cn}中任取三项ck,cm,cn(k<m<n),由ck+cn与2cm的大小关系去判断该命题是否正确.他将得到什么结论?

查看答案和解析>>


同步练习册答案