已知函数(其中a为常数.).利用函数 查看更多

 

题目列表(包括答案和解析)

某企业为打入国际市场,决定从A、B两种产品中只选择一种进行投资生产。已知投资生产这两种产品的有关数据如下表:(单位:万美元)

项目

类别

年固定成本

每件产品成本

每件产品销售价

每年最多可生产的件数

A产品

20

10

200

B产品

40

8

18

120

其中年固定成本与年生产的件数无关,为常数,且。另外,年销售件B产品时需上交万美元的特别关税。

(1)写出该厂分别投资生产A、B两种产品的年利润与生产相应产品的件数之间的函数关系并指明其定义域;

(2)如何投资才可获得最大年利润。

查看答案和解析>>

某企业为打入国际市场,决定从A、B两种产品中只选择一种进行投资生产。已知投资生产这两种产品的有关数据如下表:(单位:万美元)
项目
类别
年固定成本
每件产品成本
每件产品销售价
每年最多可生产的件数
A产品
20

10
200
B产品
40
8
18
120
其中年固定成本与年生产的件数无关,为常数,且。另外,年销售件B产品时需上交万美元的特别关税。
(1)写出该厂分别投资生产A、B两种产品的年利润与生产相应产品的件数之间的函数关系并指明其定义域;
(2)如何投资才可获得最大年利润。

查看答案和解析>>

已知某种产品的数量x(百件)与其成本y(千元)之间的函数关系可以近似用y=ax2+bx+c表示,其中a,b,c为待定常数,今有实际统计数据如下表:
产品数量x(百件) 6 10 20
成本合计y(千元) 104 160 370
(1)试确定成本函数y=f(x);
(2)已知每件这种产品的销售价为200元,求利润函数p=p(x);
(3)据利润函数p=p(x)确定盈亏转折时的产品数量.(即产品数量等于多少时,能扭亏为盈或由盈转亏)

查看答案和解析>>

商场销售某种商品的经验表明,该商品每日的销售量(单位:千克)与销售价格(单位:元/千克)满足关系式,其中为常数,已知销售价格为5元/千克时,每日可售出该商品11千克.

(1) 求的值;

(2) 若商品的成品为3元/千克, 试确定销售价格的值,使商场每日销售该商品所获得的利润最大

【解析】(1)利用销售价格为5元/千克时,每日可售出该商品11千克.把x=5,y=11代入,解关于a的方程即可求a..

(2)在(1)的基础上,列出利润关于x的函数关系式,

利润=销售量(销售单价-成品单价),然后利用导数求其最值即可.

 

查看答案和解析>>

某工厂统计资料显示,一年中总产品次品率P与日产量件之间的关系如下表所示:

日产量

80

81

82

98

99

100

次品率

    其中(a为常数),已知生产一件正品赢利k元,生产一件次品损失

为给定常数).

   (Ⅰ)求出a,并将该厂的日盈利额y(元)表示为日生产量x(件)的函数;

   (Ⅱ)为获取最大盈利,该厂的日生产量应定为多少件?

查看答案和解析>>

 

一、选择题

1―8  DAACA  CBD

二、填空题

9.    10.    11.    12.    13.50    14.5

三、解答题

15.(本小题满分13分)

解:(1)由………………2分

整理得

……………………3分

……………………5分

又因为

所以…………………………6分

(2)因为,所以

…………………………7分

所以.

.……………………11分

因为……………………12分

所以……………………13分

16.(本小题满分13分)

解:(1)取AC的中点O,连结OS,OB。

∵SA=SC,AB=BC,

∴AC⊥SO,AC⊥OB。又平面SAC⊥平面ABC,且平面SAC∩平面ABC=BC,

∴SO⊥平面ABC。

故SB在平面ABC内的射影为OB。

∴AC⊥SB.……………………6分

(2)取OB的中点D,作NE⊥CM交GM于E,连结DE,ND。

在△SOB中,N、D分别为SB,OB的中点,

∴DN//SO,又SO⊥平面ABC,

∴DN⊥平面ABC,由NE⊥CM得DE⊥CM。

故∠NED为二面角N―CM―B的平面角,………………9分

设OB与CM交于G,则G为△ABC的中心

DE⊥CM,BM⊥CM,

在△SAC中可得

在△SOB中,ND=

在Rt△NDE中,

.

∴二面角N―CM―B的大小为……………………14分

解法二:(1)取AC的中点O,连结OS,OB。

∵SA=SC,AB=BC,

∴AC⊥SO,AC⊥OB。

又平面SAC⊥平面ABC,

∴SO⊥平面ABC。

如图建系为O―xyz。

则A(2,0,0),B(0,2

C(―2,0,0),S(0,0,),

M(1,),N(),

∴AC⊥SB.……………………6分

(2)由(1)得

为平面ABC的法向量,

       ∴二面角N-CM-B的大小为……………………………………………14分

17.(本小题满分13分)

解:(Ⅰ)由题意C,A1,A2,A3四点构成一个正三棱锥,CA1,CA2,CA3为该三棱锥

的三条侧棱,………………………………………………………………2分

三棱锥的侧棱……………………………………4分

于是有(0<x<2)……………………………5分

(Ⅱ)对y求导得……………………………………8分

=0得解得(舍),……10分

故当时,即BC=1.5m时,y取得最小值为6m。………………………13分

18.(本小题满分13分)

       解:(Ⅰ)记“恰好射击5次引爆油罐”的事件为事件A,

……………………………………4分

(Ⅱ)射击次数的可能取值为2,3,4,5。…………………………………5分

=

=

=

=。……………………………………11分

的分布列为

2

3

4

5

P

……………………………………………………………………………12分

     E=2×+3×+4×+5×=

故所求的数学期望为………………………………………………13分

19.(本小题满分13分)

       解:(Ⅰ)由于四边形OFPM是菱形,故

作双曲线的右准线交PM于点H

…………………………………………………3分

所以离心率

整理得解得(舍)。

故所求双曲线的离心率为2。……………………………………………5分

 

 

 

 

 

 

 

 

 

 

    (Ⅱ)由,又

    双曲线方程为

   设P的横坐标为,由=a

       将其带入双曲线方程

       解得                                                                    7分

       ,故直线AB的方程为                                      8分

       将直线AB方程代入双曲线方程                                  10分

       由

       解得,则

       所求双曲线方程为                                                                       13分

20.(本小题满分14分)

       解:(1)当时,,所以

       两边取倒数,得,即=-1,又

所以数列是首项为―1,公差d= ―1的等差数列………………3分

所以

即数列的通项公式为……………………4分

(2)根据题意,只需当时,方程有解,………………5分

即方程有不等式a的解

将x=a代入方程左边,左边为1,与右边不相等。

故方程不可能有解x=a。……………………7分

,得.

即实数a的取值范围是……………………10分

(3)假设存在实数a,使处取定义域中的任一实数值作为x1,都可以用上述方法构造出一个无穷数列{},

那么根据题意可知,中无解,……………………12分

即当无实数解.

由于的解。

所以对任意无实数解,

因此,

故a= ―1即为所求a的值…………………………14分

 


同步练习册答案