对于给定的定义域中的x1.令 20090508 查看更多

 

题目列表(包括答案和解析)

给出下列四个判断:
①定义在R上的奇函数f(x),当x>0时f(x)=x2+2,则函数f(x)的值域为{y|y≥2或y≤-2};
②若不等式x3+x2+a<0对一切x∈[0,2]恒成立,则实数a的取值范围是{a|a<-12};
③当f(x)=log3x时,对于函数f(x)定义域中任意的x1,x2(x1≠x2)都有f(
x1+x2
2
)<
f(x1)+f(x2)
2

④设g(x)表示不超过t>0的最大整数,如:[2]=2,[1.25]=1,对于给定的n∈N+,定义
C
x
n
=
n(n-1)…(n-[x]+1)
x(x-1)…(x-[x]+1)
,x∈[1,+∞),则当x∈[
3
2
,2)时函数
C
x
8
的值域是(4,
16
3
]

上述判断中正确的结论的序号是
②④
②④

查看答案和解析>>

(2012•卢湾区一模)已知函数f(x)=
x+1-tt-x
(t为常数).
(1)当t=1时,在图中的直角坐标系内作出函数y=f(x)的大致图象,并指出该函数所具备的基本性质中的两个(只需写两个).
(2)设an=f(n)(n∈N*),当t>10,且t∉N*时,试判断数列{an}的单调性并由此写出该数列中最大项和最小项(可用[t]来表示不超过t的最大整数).
(3)利用函数y=f(x)构造一个数列{xn},方法如下:对于给定的定义域中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1)(n≥2,n∈N*),…在上述构造过程中,若xi(i∈N*)在定义域中,则构造数列的过程继续下去;若xi不在定义域中,则构造数列的过程停止.若取定义域中的任一值作为x1,都可以用上述方法构造出一个无穷数列{xn},求实数t的值.

查看答案和解析>>

已知函数f(x)=
1a-x
-1
(其中a为常数,x≠a).利用函数y=f(x)构造一个数列{xn},方法如下:
对于给定的定义域中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1),…
在上述构造过程中,如果xi(i=1,2,3,…)在定义域中,那么构造数列的过程继续下去;如果xi不在定义域中,那么构造数列的过程就停止.
(Ⅰ)当a=1且x1=-1时,求数列{xn}的通项公式;
(Ⅱ)如果可以用上述方法构造出一个常数列,求a的取值范围;
(Ⅲ)是否存在实数a,使得取定义域中的任一实数值作为x1,都可用上述方法构造出一个无穷数列{xn}?若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

给出函数封闭的定义:若对于定义域D内的任意一个自变量x0,都有函数值f(x0)∈D,称函数y=f(x)在D上封闭.
(1)若定义域D1=(0,1),判断函数g(x)=2x-1是否在D1上封闭,并说明理由;
(2)若定义域D2=(1,5],是否存在实数a,使得函数f(x)=
5x-ax+2
在D2上封闭?若存在,求出a的取值范围;若不存在,请说明理由.
(3)利用(2)中函数,构造一个数列{xn},方法如下:对于给定的定义域D2=(1,5]中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1),…在上述构造数列的过程中,如果xi(i=1,2,3,4…)在定义域中,构造数列的过程将继续下去;如果xi不在定义域中,则构造数列的过程停止.
①如果可以用上述方法构造出一个无穷常数列{xn},求实数a的取值范围.
②如果取定义域中任一值作为x1,都可以用上述方法构造出一个无穷数列{xn},求实数a的取值范围.

查看答案和解析>>

(2006•石景山区一模)已知函数y=f(x)对于任意θ≠
2
(k∈Z),都有式子f(a-tanθ)=cotθ-1成立(其中a为常数).
(Ⅰ)求函数y=f(x)的解析式;
(Ⅱ)利用函数y=f(x)构造一个数列,方法如下:
对于给定的定义域中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1),…在上述构造过程中,如果xi(i=1,2,3,…)在定义域中,那么构造数列的过程继续下去;如果xi不在定义域中,那么构造数列的过程就停止.
(ⅰ)如果可以用上述方法构造出一个常数列,求a的取值范围;
(ⅱ)是否存在一个实数a,使得取定义域中的任一值作为x1,都可用上述方法构造出一个无穷数列{xn}?若存在,求出a的值;若不存在,请说明理由;
(ⅲ)当a=1时,若x1=-1,求数列{xn}的通项公式.

查看答案和解析>>

 

一、选择题

1―8  DAACA  CBD

二、填空题

9.    10.    11.    12.    13.50    14.5

三、解答题

15.(本小题满分13分)

解:(1)由………………2分

整理得

……………………3分

……………………5分

又因为

所以…………………………6分

(2)因为,所以

…………………………7分

所以.

.……………………11分

因为……………………12分

所以……………………13分

16.(本小题满分13分)

解:(1)取AC的中点O,连结OS,OB。

∵SA=SC,AB=BC,

∴AC⊥SO,AC⊥OB。又平面SAC⊥平面ABC,且平面SAC∩平面ABC=BC,

∴SO⊥平面ABC。

故SB在平面ABC内的射影为OB。

∴AC⊥SB.……………………6分

(2)取OB的中点D,作NE⊥CM交GM于E,连结DE,ND。

在△SOB中,N、D分别为SB,OB的中点,

∴DN//SO,又SO⊥平面ABC,

∴DN⊥平面ABC,由NE⊥CM得DE⊥CM。

故∠NED为二面角N―CM―B的平面角,………………9分

设OB与CM交于G,则G为△ABC的中心

DE⊥CM,BM⊥CM,

在△SAC中可得

在△SOB中,ND=

在Rt△NDE中,

.

∴二面角N―CM―B的大小为……………………14分

解法二:(1)取AC的中点O,连结OS,OB。

∵SA=SC,AB=BC,

∴AC⊥SO,AC⊥OB。

又平面SAC⊥平面ABC,

∴SO⊥平面ABC。

如图建系为O―xyz。

则A(2,0,0),B(0,2

C(―2,0,0),S(0,0,),

M(1,),N(),

∴AC⊥SB.……………………6分

(2)由(1)得

为平面ABC的法向量,

       ∴二面角N-CM-B的大小为……………………………………………14分

17.(本小题满分13分)

解:(Ⅰ)由题意C,A1,A2,A3四点构成一个正三棱锥,CA1,CA2,CA3为该三棱锥

的三条侧棱,………………………………………………………………2分

三棱锥的侧棱……………………………………4分

于是有(0<x<2)……………………………5分

(Ⅱ)对y求导得……………………………………8分

=0得解得(舍),……10分

故当时,即BC=1.5m时,y取得最小值为6m。………………………13分

18.(本小题满分13分)

       解:(Ⅰ)记“恰好射击5次引爆油罐”的事件为事件A,

……………………………………4分

(Ⅱ)射击次数的可能取值为2,3,4,5。…………………………………5分

=

=

=

=。……………………………………11分

的分布列为

2

3

4

5

P

……………………………………………………………………………12分

     E=2×+3×+4×+5×=

故所求的数学期望为………………………………………………13分

19.(本小题满分13分)

       解:(Ⅰ)由于四边形OFPM是菱形,故

作双曲线的右准线交PM于点H

…………………………………………………3分

所以离心率

整理得解得(舍)。

故所求双曲线的离心率为2。……………………………………………5分

 

 

 

 

 

 

 

 

 

 

    (Ⅱ)由,又

    双曲线方程为

   设P的横坐标为,由=a

       将其带入双曲线方程

       解得                                                                    7分

       ,故直线AB的方程为                                      8分

       将直线AB方程代入双曲线方程                                  10分

       由

       解得,则

       所求双曲线方程为                                                                       13分

20.(本小题满分14分)

       解:(1)当时,,所以

       两边取倒数,得,即=-1,又

所以数列是首项为―1,公差d= ―1的等差数列………………3分

所以

即数列的通项公式为……………………4分

(2)根据题意,只需当时,方程有解,………………5分

即方程有不等式a的解

将x=a代入方程左边,左边为1,与右边不相等。

故方程不可能有解x=a。……………………7分

,得.

即实数a的取值范围是……………………10分

(3)假设存在实数a,使处取定义域中的任一实数值作为x1,都可以用上述方法构造出一个无穷数列{},

那么根据题意可知,中无解,……………………12分

即当无实数解.

由于的解。

所以对任意无实数解,

因此,

故a= ―1即为所求a的值…………………………14分

 


同步练习册答案