各项均不为0的数列满足.则 查看更多

 

题目列表(包括答案和解析)

各项均不为0的数列{}满足,则          .

查看答案和解析>>

已知各项均不为零的等差数列{an}满足2a2-a+2a12=0,数列{bn}是等比数列,且b7=a7,则b3·b11

[  ]

A.16

B.8

C.4

D.2

查看答案和解析>>

已知数列是各项均不为0的等差数列,公差为d,为其前n项和,且满足,.数列满足,为数列的前n项和.

(1)求数列的通项公式和数列的前n项和

(2)若对任意的,不等式恒成立,求实数的取值范围;

(3)是否存在正整数,使得成等比数列?若存在,求出所有的值;若不存在,请说明理由.

【解析】第一问利用在中,令n=1,n=2,

   即      

解得,, [

时,满足

第二问,①当n为偶数时,要使不等式恒成立,即需不等式恒成立.   

 ,等号在n=2时取得.

此时 需满足.  

②当n为奇数时,要使不等式恒成立,即需不等式恒成立.     

 是随n的增大而增大, n=1时取得最小值-6.

此时 需满足

第三问

     若成等比数列,则

即.

,可得,即

        .

(1)(法一)在中,令n=1,n=2,

   即      

解得,, [

时,满足

(2)①当n为偶数时,要使不等式恒成立,即需不等式恒成立.   

 ,等号在n=2时取得.

此时 需满足.  

②当n为奇数时,要使不等式恒成立,即需不等式恒成立.     

 是随n的增大而增大, n=1时取得最小值-6.

此时 需满足

综合①、②可得的取值范围是

(3)

     若成等比数列,则

即.

,可得,即

,且m>1,所以m=2,此时n=12.

因此,当且仅当m=2, n=12时,数列中的成等比数列

 

查看答案和解析>>

已知各项均为非负整数的数列A:a,a1,…,an(n∈N*),满足a=0,a1+…+an=n.若存在最小的正整数k,使得ak=k(k≥1),则可定义变换T,变换T将数列A变为T(A):a+1,a1+1,…,ak-1+1,0,ak+1,…,an.设Ai+1=T(Ai),i=0,1,2….
(Ⅰ)若数列A:0,1,1,3,0,0,试写出数列A5;若数列A4:4,0,0,0,0,试写出数列A
(Ⅱ)证明存在数列A,经过有限次T变换,可将数列A变为数列
(Ⅲ)若数列A经过有限次T变换,可变为数列.设Sm=am+am+1+…+an,m=1,2,…,n,求证,其中表示不超过的最大整数.

查看答案和解析>>

已知各项均为非负整数的数列A:a,a1,…,an(n∈N*),满足a=0,a1+…+an=n.若存在最小的正整数k,使得ak=k(k≥1),则可定义变换T,变换T将数列A变为T(A):a+1,a1+1,…,ak-1+1,0,ak+1,…,an.设Ai+1=T(Ai),i=0,1,2….
(Ⅰ)若数列A:0,1,1,3,0,0,试写出数列A5;若数列A4:4,0,0,0,0,试写出数列A
(Ⅱ)证明存在数列A,经过有限次T变换,可将数列A变为数列
(Ⅲ)若数列A经过有限次T变换,可变为数列.设Sm=am+am+1+…+an,m=1,2,…,n,求证,其中表示不超过的最大整数.

查看答案和解析>>


同步练习册答案