题目列表(包括答案和解析)
1 |
x |
2x2+3 |
x2+1 |
1 |
x |
2x2+3 |
x2+1 |
己知在锐角ΔABC中,角所对的边分别为,且
(I )求角大小;
(II)当时,求的取值范围.
20.如图1,在平面内,是的矩形,是正三角形,将沿折起,使如图2,为的中点,设直线过点且垂直于矩形所在平面,点是直线上的一个动点,且与点位于平面的同侧。
(1)求证:平面;
(2)设二面角的平面角为,若,求线段长的取值范围。
21.已知A,B是椭圆的左,右顶点,,过椭圆C的右焦点F的直线交椭圆于点M,N,交直线于点P,且直线PA,PF,PB的斜率成等差数列,R和Q是椭圆上的两动点,R和Q的横坐标之和为2,RQ的中垂线交X轴于T点
(1)求椭圆C的方程;
(2)求三角形MNT的面积的最大值
22. 已知函数 ,
(Ⅰ)若在上存在最大值与最小值,且其最大值与最小值的和为,试求和的值。
(Ⅱ)若为奇函数:
(1)是否存在实数,使得在为增函数,为减函数,若存在,求出的值,若不存在,请说明理由;
(2)如果当时,都有恒成立,试求的取值范围.
YC一、选择题:CDBBA, CBDDB, DB
二、填空题:13. ; 14.3 15.76 16.(1,e);e
三、解答题:
17.解:(1)f‘(x)=-3x2+6x+9 …………2分
令 f‘(x)<0,解得x<-1或x>3。 …………4分
函数f(x)的单调递减区间为(-。 …………5分
(2)f(-2)=2+a , f(2)=22+a
f(2)>f(―2)
在(―1,3)上f‘(x)>
又f(x)在[―2,1]上单调递减。 …………8分
∴f2)和f(-1)分别是f(x)在[―2,2]上的最大值和最小值。
于是有 22+a=20 , 解得a=-2
故f(x)=―x3+3x2+9x-2 …………10分
∴f(-1)=-7
即f(x)在[―2,2]上的最小值为-7 。 …………12分
18. 用表示一天之内第个部件需要调整的事件,,则, ……………………1分
以表示一天之内需要调整的部件数,则
(Ⅰ)……4分
(Ⅱ)………7分
(Ⅲ) ……………………8分
…………9分
……………………10分
的分布列为
0
1
2
3
p
0.504
0.398
0.092
0.006
…………12分
19.(本小题满分12分)
解: (I)法一:取CC1的中点F, 连接AF, BF, 则AF∥C1D.
∠BAF为异面直线AB与C1D所成的角或其补角.……(1分)
∵△ABC为等腰直角三角形,
AC=2, ∴AB=2.又∵CC1=2, ∴AF=BF=.
∵∴
∴即异面直线AB与C1D所成的角为(4分)
法二:以C为坐标原点,CB,CA,CC1分别为x轴,y轴,z轴建立空间直角坐标系,则A(0,2,0),B(2,0,0),C1(0,0,2),D(0,2,1),∴=(2,-2,0),=(0,2,-1).
由于异面直线AB与C1D所成的角为向量与的夹角或其补角.……(1分)
设与的夹角为θ,
|