17. 已知函数 (1)求的单调递增区间, (2)在中.角的对边分别是.且满足 求函数的取值范围. 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)

已知函数

(1)若函数处有极值10,求b的值;

(2)若对任意上单调递增,求b的取值范围。

 

查看答案和解析>>

已知函数 R).

(Ⅰ)若 ,求曲线  在点  处的的切线方程;

(Ⅱ)若  对任意  恒成立,求实数a的取值范围.

【解析】本试题主要考查了导数在研究函数中的运用。

第一问中,利用当时,

因为切点为(), 则,                 

所以在点()处的曲线的切线方程为:

第二问中,由题意得,即可。

Ⅰ)当时,

,                                  

因为切点为(), 则,                  

所以在点()处的曲线的切线方程为:.    ……5分

(Ⅱ)解法一:由题意得,.      ……9分

(注:凡代入特殊值缩小范围的均给4分)

,           

因为,所以恒成立,

上单调递增,                            ……12分

要使恒成立,则,解得.……15分

解法二:                 ……7分

      (1)当时,上恒成立,

上单调递增,

.                  ……10分

(2)当时,令,对称轴

上单调递增,又    

① 当,即时,上恒成立,

所以单调递增,

,不合题意,舍去  

②当时,, 不合题意,舍去 14分

综上所述: 

 

查看答案和解析>>

(本小题满分13分)

有一种新型的奇强洗衣液,特点是去污速度快.已知每投放,且个单位的洗衣液在一定量水的洗衣机中,它在水中释放的浓度(克/升)随着时间(分钟)变化的函数关系式近似为,其中.若多次投放,则某一时刻水中的洗衣液浓度为每次投放的洗衣液在相应时刻所释放的浓度之和.根据经验,当水中洗衣液的浓度不低于4(克/升)时,它才能起到有效去污的作用.

(1)若只投放一次个单位的洗衣液,2分钟时水中洗衣液的浓度为3(克/升),求的值?

(2)若只投放一次4个单位的洗衣液,则有效去污时间可达几分钟?

(3)若第一次投放2个单位的洗衣液,10分钟后再投放1个单位的洗衣液,在第12分

钟时洗衣液是否还能起到有效去污的作用?能,请加以证明;不能,请说明理由.

查看答案和解析>>

(本小题满分12分)设某物体一天中的温度是时间的函数:,其中温度的单位是,时间单位是小时,表示12:00,取正值表示12:00以后.若测得该物体在8:00的温度是,12:00的温度为,13:00的温度为,且已知该物体的温度在8:00和16:00有相同的变化率.

(1)写出该物体的温度关于时间的函数关系式;

(2)该物体在10:00到14:00这段时间中(包括10:00和14:00),何时温度最高,并求出最高温度;

(3)如果规定一个函数在区间上的平均值为,求该物体在8:00到16:00这段时间内的平均温度.

 

查看答案和解析>>

(本小题满分12分)设某物体一天中的温度是时间的函数:,其中温度的单位是,时间单位是小时,表示12:00,取正值表示12:00以后.若测得该物体在8:00的温度是,12:00的温度为,13:00的温度为,且已知该物体的温度在8:00和16:00有相同的变化率.
(1)写出该物体的温度关于时间的函数关系式;
(2)该物体在10:00到14:00这段时间中(包括10:00和14:00),何时温度最高,并求出最高温度;
(3)如果规定一个函数在区间上的平均值为,求该物体在8:00到16:00这段时间内的平均温度.

查看答案和解析>>


同步练习册答案