题目列表(包括答案和解析)
(本小题满分12分)
某学校举行知识竞赛,第一轮选拔共设有A、B、C、D四个问题,规则如下:
每位参加者记分器的初始分均为10分,答对问题A、B、C、D分别加1分、2分、3分、6分,答错任一题减2分;
每回答一题,记分器显示累计分数,当累计分数小于8分时,答题结束,淘汰出局;当累计分数大于或等于14分时,答题结束,进入下一轮;当答完四题,累计分数仍不足14分时,答题结束,淘汰出局;
每位参加者按问题A、B、C、D顺序作答,直至答题结束。
假设甲同学对问题A、B、C、D回答正确的概率依次为、、、,且各题回答正确与否相互之间没有影响。
(Ⅰ)求甲同学能进入下一轮的概率;
(Ⅱ)用ξ表示甲同学本轮答题结束时答题的个数,求ξ的分布列和数学期望Εξ。
(本小题满分12分)
某学校举行知识竞赛,第一轮选拔共设有A、B、C、D四个问题,规则如下:
每位参加者记分器的初始分均为10分,答对问题A、B、C、D分别加1分、2分、3分、6分,答错任一题减2分;
每回答一题,记分器显示累计分数,当累计分数小于8分时,答题结束,淘汰出局;当累计分数大于或等于14分时,答题结束,进入下一轮;当答完四题,累计分数仍不足14分时,答题结束,淘汰出局;
每位参加者按问题A、B、C、D顺序作答,直至答题结束。
假设甲同学对问题A、B、C、D回答正确的概率依次为、、、,且各题回答正确与否相互之间没有影响。
(Ⅰ)求甲同学能进入下一轮的概率;
(Ⅱ)用ξ表示甲同学本轮答题结束时答题的个数,求ξ的分布列和数学期望Εξ。
(本上题满分12分)某高校为了参加“CBA杯”安徽省大学生篮球联赛暨第十届CU—BA安徽省选拔赛,需要在各班选拔预备队员,规定投篮成绩甲级的可作为入围选手,选拔过程中每人投篮5次,若投中3次则确定为乙级,若投中4次及以上则可确定为甲级,一旦投中4次,即终止投篮,已知某班同学小明每次投篮投中的概率是0.6。(I)求小明投篮4次才被确定为乙级的概率; (II)设小明投篮投中次数为X,求X的分布列及期望。
(本小题满分12分)一名高二学生盼望进入某名牌大学学习,不放弃能考入该大学的任何一次机会。已知该大学通过以下任何一种方式都可被录取:
① 2010年2月国家数学奥赛集训队考试通过(集训队从2009年10月省数学竞赛壹等奖获得者中选拔,通过考试进入集训队则能被该大学提前录取);
② 2010年3月自主招生考试通过并且2010年6月高考分数达重点线;
③ 2010年6月高考达到该校录取分数线(该校录取分数线高于重点线)。
该名考生竞赛获省一等奖、自主招生考试通过、高考达重点线、高考达该校分数线等事件的概率如下表:
事件 | 省数学竞获一等奖 | 自主招生考试通过 | 高考达重点线 | 高考达该校分数线 |
概率 | 0.5 | 0.7 | 0.8 | 0.6 |
如果数学竞赛获省一等奖,该学生估计自己进入国家集训队的概率是0.4。
(1)求该学生参加自主招生考试的概率;
(2)求该学生参加考试次数的分布列与数学期望;
(3)求该学生被该大学录取的概率。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com