已知圆:交轴于A,B两点,曲线是以AB为长轴,离心率为的椭圆,其左焦点为F,若P是圆上一点,连结PF,过原点作直线PF的垂线交直线x=-2于点Q. (Ⅰ)求椭圆的标准方程, (Ⅱ) 当点P在圆上运动时,求证:直线PQ与圆相切. 查看更多

 

题目列表(包括答案和解析)

 (本小题满分12分) 已知椭圆的离心率,A,B

分别为椭圆的长轴和短轴的端点,为AB的中点,O为坐标原点,且.

(1)求椭圆的方程;

(2)过(-1,0)的直线交椭圆于P,Q两点,求△POQ面积最大时直线的方程.

 

查看答案和解析>>

(本小题满分12分)

已知双曲线G的中心在原点,它的渐近线与圆x2+y2-10x+20=0相切.过点P(-4,0)作斜率为的直线,使得和G交于A,B两点,和y轴交于点C,并且点P在线段AB上,又满足|PA|·|PB|=|PC|2.   

(1)求双曲线G的渐近线的方程;  

(2)求双曲线G的方程;

(3)椭圆S的中心在原点,它的短轴是G的实轴.如果S中垂直于的平行弦的中点的轨迹恰好是G的渐近线截在S内的部分AB,若P(x,y)(y>0)为椭圆上一点,求当的面积最大时点P的坐标.

 

 

查看答案和解析>>

(本小题满分12分) 已知椭圆的离心率,A,B
分别为椭圆的长轴和短轴的端点,为AB的中点,O为坐标原点,且.
(1)求椭圆的方程;
(2)过(-1,0)的直线交椭圆于P,Q两点,求△POQ面积最大时直线的方程.

查看答案和解析>>

(本小题满分12分) 已知椭圆的离心率,A,B
分别为椭圆的长轴和短轴的端点,为AB的中点,O为坐标原点,且.
(1)求椭圆的方程;
(2)过(-1,0)的直线交椭圆于P,Q两点,求△POQ面积最大时直线的方程.

查看答案和解析>>

(本小题满分12分)已知曲线C

(1)由曲线C上任一点E向x轴作垂线,垂足为F,点P分所成的比为,问:点P的轨迹可能是圆吗?请说明理由;

如果直线l的一个方向向量为,且过点M(0,-2),直线l交曲线C于A、B两点,又,求曲线C的方程.

查看答案和解析>>


同步练习册答案