如图.已知圆是椭圆的内接△的内切圆, 其中为椭圆的左顶点. (1)求圆的半径; (2)过点作圆的两条切线交椭圆于两点. G . 证明:直线与圆相切. 查看更多

 

题目列表(包括答案和解析)

(本小题满分14分) 如图,已知椭圆C的中心在原点,焦点在x轴上,离心率为,且过点,点A、B分别是椭圆C 长轴的左、右端点,点F是椭圆的右焦点,点P在椭圆上,且位于轴上方,.

(1)求椭圆C的方程;

(2)求点P的坐标;

(3)设M是直角三角PAF的外接圆圆心,求椭圆C上的点到点M的距离的最小值.

查看答案和解析>>

(本小题满分14分)

   如图,已知椭圆的左、右焦点分别为短轴两的端点为AB,且四边形是边长为2的正方形.

   (Ⅰ)求椭圆的方程;

(Ⅱ)若CD分别是椭圆长轴的左、右端点,动点M满足MD连结交椭圆于点证明:为定值;

(Ⅲ)在(Ⅱ)的条件下,试问轴上是否存在异于点的定点,使得以为直径的圆恒过直线的交点,若存在,求出点的坐标;若不存在,说明理由.

查看答案和解析>>

(本小题满分14分)

椭圆方程为抛物线方程为如图4所示,过点轴的平行线,与抛物线在第一象限的交点为G.已知抛物线在点G的切线经过椭圆的右焦点

       (1)求满足条件的椭圆方程和抛物线方程;

       (2)设AB分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点P,使得为直角三角形?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标) 。

查看答案和解析>>

(本小题满分14分)

椭圆方程为抛物线方程为如图4所示,过点轴的平行线,与抛物线在第一象限的交点为G.已知抛物线在点G的切线经过椭圆的右焦点

       (1)求满足条件的椭圆方程和抛物线方程;

       (2)设AB分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点P,使得为直角三角形?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标) 。

 

查看答案和解析>>

(本小题满分14分)
椭圆方程为抛物线方程为如图4所示,过点轴的平行线,与抛物线在第一象限的交点为G.已知抛物线在点G的切线经过椭圆的右焦点
(1)求满足条件的椭圆方程和抛物线方程;
(2)设AB分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点P,使得为直角三角形?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标) 。

查看答案和解析>>


同步练习册答案