32.设函数f>0.则在[a,b]上存在最大值和最小值. ( ) 查看更多

 

题目列表(包括答案和解析)

函数f(x)在[a,b]上有定义,若对任意x1,x2∈[a,b],有f()≤[f(x1)+f(x2)]则称f(x)在[a,b]上具有性质P.设f(x)在[1,3]上具有性质P,现给出如下命题:

①f(x)在[1,3]上的图像时连续不断的;

②f(x2)在[1,]上具有性质P;

③若f(x)在x=2处取得最大值1,则f(x)=1,x∈[1,3];

④对任意x1,x2,x3,x4∈[1,3],有f()[f(x1)+f(x2)+f(x3)+f(x4)]

其中真命题的序号是

[  ]

A.①②

B.①③

C.②④

D.③④

查看答案和解析>>

设函数f(x)在区间[a,b]上连续,用分点,把区间[a,b]等分成n个小区间,在每个小区间[xi-1,xi]上任取一点ξi(i=1,2,…,n),作和式(其中△x为小区间的长度),那么Sn的大小
[     ]
A.与f(x)和区间[a,b]有关,与分点的个数n和ξi的取法无关
B.与f(x)和区间[a,b]和分点的个数n有关,与ξi的取法无关
C.与f(x)和区间[a,b]和分点的个数n,ξi的取法都有关
D.与f(x)和区间[a,b]和ξi取法有关,与分点的个数n无关

查看答案和解析>>

设函数f(x)在区间[a,b]上连续,用分点,把区间[a,b] 等分成n个小区间,在每个小区间[xi-1,xi]上任取一点ξi(i=1,2,…,n),作和式(其中△x为小区间的长度),那么的大小
[     ]

A.与f(x)和区间[a,b]有关,与分点的个数n和ξi的取法无关
B.与f(x)和区间[a,b]和分点的个数n有关,与ξi的取法无关 
C.与f(x)和区间[a,b]和分点的个数n,ξi的取法都有关
D.与f(x)和区间[a,b]和ξi取法有关,与分点的个数n无关

查看答案和解析>>

设函数f(x)=x-In(x+m),其中常数m为整数.
(1)当m为何值时,f(x)≥0;
(2)定理:若函数g(x)在[a,b]上连续,且g(a)与g(b)异号,则至少存在一点x0∈(a,b),使g(x0)=0.
试用上述定理证明:当整数m>1时,方程f(x)=0,在[e-m-m,e2m-m]内有两个实根.

查看答案和解析>>

12、设函数f(x)在区间[a,b]上连续,若满足
f(a)•f(b)≤0
,则方程f(x)=0在区间[a,b]上一定有实数根.

查看答案和解析>>


同步练习册答案