即-<λ<1.又λ≠0.λ为整数. ∴λ=-1.使得对任意n∈N*,都有. 12分2.设数列的前和为.已知.... 一般地.(). (1)求, (2)求, (3)求和:. (1), --3分 (2)当时.() . --6分 所以.(). --8分 同理可求得:. --10分 设=. 则.(用等比数列前n项和公式的推导方法).相减得 .所以 . --14分 查看更多

 

题目列表(包括答案和解析)

汽车在行驶中,汽油平均消耗率g(即每小时的汽油消耗量,单位:L/h)与汽车行驶的平均速度v(单位:km/h)之间有函数关系:g= (v-50)2+5 (0<v<150).

“汽油的使用率最高”为每千米汽油平均消耗量最小(单位:L/km),则汽油的使用率最高时,汽车速度是           (km/h).

查看答案和解析>>

(14分)由于对某种商品开始收税,使其定价比原定价上涨x成(即上涨率为),涨价后,商品卖出个数减少bx成,税率是新定价的a成,这里a,b均为正常数,且a<10,设售货款扣除税款后,剩余y元,要使y最大,求x的值.

 

查看答案和解析>>

某种商品原来定价为每件p元,每月将卖出n件。若定价上涨x成(这里“x成”即“”,0<x≤10),每月卖出的数量将减少y成,而销售金额变成原来的z倍,若y=x,求使销售金额比原来有所增加的x的取值范围。

查看答案和解析>>

(14分)由于对某种商品开始收税,使其定价比原定价上涨x成(即上涨率为),涨价后,商品卖出个数减少bx成,税率是新定价的a成,这里a,b均为正常数,且a<10,设售货款扣除税款后,剩余y元,要使y最大,求x的值.

查看答案和解析>>

如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花园AMPN,要求B在AM上,D在AN上,且对角线MN过C点,|AB|=3米,|AD|=2米,

(I)要使矩形AMPN的面积大于32平方米,则AN的长应在什么范围内?

(II)当AN的长度是多少时,矩形AMPN的面积最小?并求出最小面积.

(Ⅲ)若AN的长度不少于6米,则当AN的长度是多少时,矩形AMPN的面积最小?并求出最小面积.

【解析】本题主要考查函数的应用,导数及均值不等式的应用等,考查学生分析问题和解决问题的能力   第一问要利用相似比得到结论。

(I)由SAMPN > 32 得 > 32 ,

∵x >2,∴,即(3x-8)(x-8)> 0

∴2<X<8/3,即AN长的取值范围是(2,8/3)或(8,+)

第二问,  

当且仅当

(3)令

∴当x > 4,y′> 0,即函数y=在(4,+∞)上单调递增,∴函数y=在[6,+∞]上也单调递增.                

∴当x=6时y=取得最小值,即SAMPN取得最小值27(平方米).

 

查看答案和解析>>


同步练习册答案