以下均是基本物理量的一组是: A.力 千克 B.质量 千克 C.长度 温度 D.千克 米 查看更多

 

题目列表(包括答案和解析)

(2009?广东模拟)(1)甲乙两位同学做“利用打点计时器研究匀变速直线运动”的实验时:
①他们选取了一条点迹清晰的纸带,进行测量,甲认为应该把刻度尺的零刻线与第一个计数点0对齐,然后依次读取每个计数点对应的刻度值,再求得各段的长度;乙认为应该用刻度尺分别测量各段的长度,直接记录数据,可以省去计算的麻烦.那么,关于他们的做法有以下三种认识:
A.两种方法各有利弊,都可以;B.甲的方法的更符合试验要求;C.乙的方法的更符合试验要求.
你认为正确的方法是
B
B

②下面是一条他们选好的纸带,并已测出了各个计数点的间距是s1、s2、s3、s4、s5、s6,如图:

甲、乙同学各自想出了一种求加速度的方法:
甲:根据s2-s1=a1T2,s3-s2=a2T2,s4-s3=a3T2,s5-s4=a4T2,s6-s5=a5T2,分别求出a1、a2、a3、a4、a5,再求平均值
.
a
=
a1+a2+a3+a4+a5
5

乙:根据(s4+s5+s6)-(s1+s2+s3)=a(3T)2,求得a=
(s4+s5+s6)-(s1+s2+s3)
9T2

你认为应采用同学
的方法更好.
(2)(10分)某实验小组利用如图甲所示的实验装置来验证钩码和滑块所组成的系统机械能守恒.

①实验前需要调整气垫导轨底座使之水平,利用现有器材如何判断导轨是否水平?
接通气源,将滑块静置于气垫导轨上,若滑块基本保持静止,则说明导轨是水平的
接通气源,将滑块静置于气垫导轨上,若滑块基本保持静止,则说明导轨是水平的

②如图乙所示,用游标卡尺测得遮光条的宽度d=
0.52
0.52
cm;实验时将滑块从图示位置由静止释放,由数字计时器读出遮光条通过光电门的时间△t=1.2×10-2s,则滑块经过光电门时的瞬时速度为
0.43
0.43
m/s.在本次实验中还需要测量的物理量有:钩码的质量m、
滑块上的遮光条初始位置到光电门的距离s
滑块上的遮光条初始位置到光电门的距离s
滑块的质量M
滑块的质量M
(文字说明并用相应的字母表示).
③本实验通过比较
mgs
mgs
1
2
(m+M)(
d
△t
)
2
1
2
(m+M)(
d
△t
)
2
在实验误差允许的范围内相等(用测量的物理量符号表示),从而验证了系统的机械能守恒.

查看答案和解析>>

(2010?安徽模拟)I.下列有关高中物理实验的说法中,不正确的一项是
D
D

A.“验证力的平行四边形定则”实验采用的科学方法是等效替代法
B.电火花打点计时器的工作电压是220V的交流电
C.在用打点计时器“研究匀变速直线运动”的实验中,由纸带上的一系列点迹取计数点,可求出任意两个计数点之间的平均速度
D.在“验证机械能守恒定律”的实验中,必须要用天平测出下落物体的质量
Ⅱ.二极管是一种半导体元件,电路符号为“”,其特点是具有单向导电性,即电流从正极流入时电阻比较小,而从负极流入时电阻比较大.
①某实验兴趣小组对某种晶体二极管的伏安特性曲线进行测绘.因二极管外壳所印的标识模糊,为判断正负极,用多用电表电阻挡测二极管的正反向电阻.将选择开关旋至合适倍率,调整欧姆零点后,将黑表笔接触二极管的左端、红表笔接触右端时,指针偏角比较小;再将红、黑表笔位置对调时,指针偏角比较大,由此判断
端为二极管的正极.(选填“左”、“右”)
②厂家提供的伏安特性曲线如图1.该小组只对加正向电压时的伏安特性曲线进行了测绘,以验证与厂家提供的数据是否一致,可选用的器材有:
A.直流电源,电动势3V,内阻忽略不计;
B.0~20Ω的滑动变阻器一只;
C.量程5V、内阻约50kΩ的电压表一只;
D.量程3V、内阻约20kΩ的电压表一只;
E.量程0.6A、内阻约0.5Ω的电流表一只;
F.量程50mA、内阻约5Ω的电流表一只;
G.待测二极管一只;
H.导线、电键等.
为了提高测量结果的准确度,电压表应选用
D
D
,电流表应选用
F
F
.(填序号字母)
③为了达到测量目的,请在答题卡上图2的虚线框内画出正确的实验电路原理图.
④为了保护二极管,正向电流不要超过25mA,请你对本实验的设计或操作提出一条合理的建议
在二极管支路串入一阻值合适的限流电阻起保护作用;
在二极管支路串入一阻值合适的限流电阻起保护作用;

⑤该小组通过实验采集数据后描绘出了二极管的伏安特性曲线,通过对比,与厂家提供的曲线基本吻合.如果将该二极管与一阻值R=50Ω的电阻串联,再接至电动势E=1.5V、内阻不计的电源上,二极管处于正向导通状态.请你写出根据题中给出的伏安曲线求通过二极管电流的步骤:(不要求求出结果)
设二极管两端电压为U,通过的电流为I,由闭合电路欧姆定律得方程U=1.5-50I,在二极管伏安图象中作出该方程的直线,该直线与二极管伏安曲线相交,读出交点的纵坐标值即为I.
设二极管两端电压为U,通过的电流为I,由闭合电路欧姆定律得方程U=1.5-50I,在二极管伏安图象中作出该方程的直线,该直线与二极管伏安曲线相交,读出交点的纵坐标值即为I.

查看答案和解析>>

(Ⅰ)某实验小组利用如图甲所示的实验装置来验证机械能守恒定律.已知当地的重力加速度g=9.80m/s2
精英家教网
①实验小组选出一条纸带如图乙所示,其中O点为打点计时器打下的第一个点,A、B、C为三个计数点,在计数点A和B、B和C之间还各有一个点,测得h1=12.01cm,h2=19.15cm,h3=27.86cm.打点计时器通以50Hz的交流电.根据以上数据算出:当打点计时器打到B点时重锤的重力势能比开始下落时减少了
 
J;此时重锤的动能比开始下落时增加了
 
 J,根据计算结果可以知道该实验小组在做实验时出现的问题是
 
.(重锤质量m已知)
②在图乙所示的纸带基础上,某同学又选取了多个计数点,并测出了各计数点到第一个点O的距离h,算出了各计数点对应的速度v,以h为横轴,以v2/2为纵轴画出的图线应是如下图中的
 
.图线的斜率表示
 

精英家教网
(Ⅱ)碰撞的恢复系数的定义为e=
|v2-v1||v20-v10|
,其中v10和v20分别是碰撞前两物体的速度,v1和v2分别是碰撞后物体的速度.弹性碰撞的恢复系数e=1,非弹性碰撞的e<1.某同学借用验证动力守恒定律的实验装置(如图所示)验证弹性碰撞的恢复系数是否为1,实验中使用半径相等的钢质小球1和2(它们之间的碰撞可近似视为弹性碰撞),且小球1的质量大于小球2的质量.
精英家教网
实验步骤如下:
安装好实验装置,做好测量前的准备,并记下重锤线所指的位置O.
第一步,不放小球2,让小球1从斜槽上A点由静止滚下,并落在地面上.重复多次,用尽可能小的圆把小球的所落点圈在里面,其圆心就是小球落点的平均位置.
第二步,把小球2 放在斜槽前端边缘处C点,让小球1从A点由静止滚下,使它们碰撞.重复多次,并使用与第一步同样的方法分别标出碰撞后小球落点的平均位置.
第三步,用刻度尺分别测量三个落地点的平均位置离O点的距离,即线段OM、OP、ON的长度.
上述实验中,
①P点是
 
平均位置,
M点是
 
平均位置,
N点是
 
平均位置.
②请写出本实验的原理
 
,写出用测量量表示的恢复系数的表达式
 

③三个落地点距O点的距离OM、OP、ON与实验所用的小球质量是否有关系?
 

查看答案和解析>>

(一)如图1所示,在“探究功与物体速度变化的关系”的实验中,下列说法正确的是
BD
BD

(A)为减小实验误差,长木板应水平放置
(B)通过增加橡皮筋的条数可以使橡皮筋对小车做的功成整  数倍增加
(C)小车在橡皮筋拉力作用下做匀加速直线运动,当橡皮筋恢复原长后小车做匀速运动
(D)应选择纸带上点距均匀的一段计算小车的速度
(二)某探究学习小组的同学欲验证“动能定理”,他们在实验室组装了一套如图2所示的装置,另外他们还找到了打点计时器所用的学生电源、导线、复写纸、纸带、小木块、细沙.当滑块连接上纸带,用细线通过滑轮挂上空的小沙桶时,释放小桶,滑块处于静止状态.若你是小组中的一位成员,要完成该项实验,则:
(1)你认为还需要的实验器材有
天平
天平
刻度尺
刻度尺

(2)实验时为了保证滑块受到的合力与沙和沙桶的总重力大小基本相等,沙和沙桶的总质量应满足的实验条件是
沙和沙桶的总质量远小于滑块的质量,
沙和沙桶的总质量远小于滑块的质量,
,实验时对木板放置要求是
倾斜平衡摩擦力
倾斜平衡摩擦力

(3)在(2)的基础上,某同学用天平称量滑块的质量M.往沙桶中装入适量的细沙,用天平称出此时沙和沙桶的总质量m.让沙桶带动滑块加速运动,用打点计时器记录其运动情况,在打点计时器打出的纸带上取两点,测出这两点的间距L和这两点的速度大小v1与v2(v1<v2).则本实验最终要验证的数学表达式为
mgL=
1
2
M
v
2
2
-
1
2
M
v
2
1
mgL=
1
2
M
v
2
2
-
1
2
M
v
2
1
(用题中的字母表示实验中测量得到的物理量).

查看答案和解析>>

第七部分 热学

热学知识在奥赛中的要求不以深度见长,但知识点却非常地多(考纲中罗列的知识点几乎和整个力学——前五部分——的知识点数目相等)。而且,由于高考要求对热学的要求逐年降低(本届尤其低得“离谱”,连理想气体状态方程都没有了),这就客观上给奥赛培训增加了负担。因此,本部分只能采新授课的培训模式,将知识点和例题讲解及时地结合,争取让学员学一点,就领会一点、巩固一点,然后再层叠式地往前推进。

一、分子动理论

1、物质是由大量分子组成的(注意分子体积和分子所占据空间的区别)

对于分子(单原子分子)间距的计算,气体和液体可直接用,对固体,则与分子的空间排列(晶体的点阵)有关。

【例题1】如图6-1所示,食盐(NaCl)的晶体是由钠离子(图中的白色圆点表示)和氯离子(图中的黑色圆点表示)组成的,离子键两两垂直且键长相等。已知食盐的摩尔质量为58.5×10-3kg/mol,密度为2.2×103kg/m3,阿伏加德罗常数为6.0×1023mol-1,求食盐晶体中两个距离最近的钠离子中心之间的距离。

【解说】题意所求即图中任意一个小立方块的变长(设为a)的倍,所以求a成为本题的焦点。

由于一摩尔的氯化钠含有NA个氯化钠分子,事实上也含有2NA个钠离子(或氯离子),所以每个钠离子占据空间为 v = 

而由图不难看出,一个离子占据的空间就是小立方体的体积a3 ,

即 a3 =  = ,最后,邻近钠离子之间的距离l = a

【答案】3.97×10-10m 。

〖思考〗本题还有没有其它思路?

〖答案〗每个离子都被八个小立方体均分,故一个小立方体含有×8个离子 = 分子,所以…(此法普遍适用于空间点阵比较复杂的晶体结构。)

2、物质内的分子永不停息地作无规则运动

固体分子在平衡位置附近做微小振动(振幅数量级为0.1),少数可以脱离平衡位置运动。液体分子的运动则可以用“长时间的定居(振动)和短时间的迁移”来概括,这是由于液体分子间距较固体大的结果。气体分子基本“居无定所”,不停地迁移(常温下,速率数量级为102m/s)。

无论是振动还是迁移,都具备两个特点:a、偶然无序(杂乱无章)和统计有序(分子数比率和速率对应一定的规律——如麦克斯韦速率分布函数,如图6-2所示);b、剧烈程度和温度相关。

气体分子的三种速率。最可几速率vP :f(v) = (其中ΔN表示v到v +Δv内分子数,N表示分子总数)极大时的速率,vP == ;平均速率:所有分子速率的算术平均值, ==;方均根速率:与分子平均动能密切相关的一个速率,==〔其中R为普适气体恒量,R = 8.31J/(mol.K)。k为玻耳兹曼常量,k =  = 1.38×10-23J/K 〕

【例题2】证明理想气体的压强P = n,其中n为分子数密度,为气体分子平均动能。

【证明】气体的压强即单位面积容器壁所承受的分子的撞击力,这里可以设理想气体被封闭在一个边长为a的立方体容器中,如图6-3所示。

考查yoz平面的一个容器壁,P =            ①

设想在Δt时间内,有Nx个分子(设质量为m)沿x方向以恒定的速率vx碰撞该容器壁,且碰后原速率弹回,则根据动量定理,容器壁承受的压力

 F ==                            ②

在气体的实际状况中,如何寻求Nx和vx呢?

考查某一个分子的运动,设它的速度为v ,它沿x、y、z三个方向分解后,满足

v2 =  +  + 

分子运动虽然是杂乱无章的,但仍具有“偶然无序和统计有序”的规律,即

 =  +  +  = 3                    ③

这就解决了vx的问题。另外,从速度的分解不难理解,每一个分子都有机会均等的碰撞3个容器壁的可能。设Δt = ,则

 Nx = ·3N = na3                         ④

注意,这里的是指有6个容器壁需要碰撞,而它们被碰的几率是均等的。

结合①②③④式不难证明题设结论。

〖思考〗此题有没有更简便的处理方法?

〖答案〗有。“命令”所有分子以相同的速率v沿+x、?x、+y、?y、+z、?z这6个方向运动(这样造成的宏观效果和“杂乱无章”地运动时是一样的),则 Nx =N = na3 ;而且vx = v

所以,P =  = ==nm = n

3、分子间存在相互作用力(注意分子斥力和气体分子碰撞作用力的区别),而且引力和斥力同时存在,宏观上感受到的是其合效果。

分子力是保守力,分子间距改变时,分子力做的功可以用分子势能的变化表示,分子势能EP随分子间距的变化关系如图6-4所示。

分子势能和动能的总和称为物体的内能。

二、热现象和基本热力学定律

1、平衡态、状态参量

a、凡是与温度有关的现象均称为热现象,热学是研究热现象的科学。热学研究的对象都是有大量分子组成的宏观物体,通称为热力学系统(简称系统)。当系统的宏观性质不再随时间变化时,这样的状态称为平衡态。

b、系统处于平衡态时,所有宏观量都具有确定的值,这些确定的值称为状态参量(描述气体的状态参量就是P、V和T)。

c、热力学第零定律(温度存在定律):若两个热力学系统中的任何一个系统都和第三个热力学系统处于热平衡状态,那么,这两个热力学系统也必定处于热平衡。这个定律反映出:处在同一热平衡状态的所有的热力学系统都具有一个共同的宏观特征,这一特征是由这些互为热平衡系统的状态所决定的一个数值相等的状态函数,这个状态函数被定义为温度。

2、温度

a、温度即物体的冷热程度,温度的数值表示法称为温标。典型的温标有摄氏温标t、华氏温标F(F = t + 32)和热力学温标T(T = t + 273.15)。

b、(理想)气体温度的微观解释: = kT (i为分子的自由度 = 平动自由度t + 转动自由度r + 振动自由度s 。对单原子分子i = 3 ,“刚性”〈忽略振动,s = 0,但r = 2〉双原子分子i = 5 。对于三个或三个以上的多原子分子,i = 6 。能量按自由度是均分的),所以说温度是物质分子平均动能的标志。

c、热力学第三定律:热力学零度不可能达到。(结合分子动理论的观点2和温度的微观解释很好理解。)

3、热力学过程

a、热传递。热传递有三种方式:传导(对长L、横截面积S的柱体,Q = K

查看答案和解析>>


同步练习册答案