已知动圆过定点.且与定直线相切. (1)求动圆圆心的轨迹C的方程, (2)若.是轨迹C上的两不同动点.且. 分别以.为切点作轨迹C的切线.设其交点Q.证明为定值. 21已知函数..为正的常数. (1)求函数的定义域, (2)求的单调区间.并指明单调性, (3)若..证明:. 安徽省两地三校2010届高三元旦联考数学(理)试卷 查看更多

 

题目列表(包括答案和解析)

.(本小题共13分)已知动圆过定点,且与直线相切.(1) 求动圆的圆心轨迹的方程;(2) 是否存在直线,使过点(0,1),并与轨迹交于两点,且满足?若存在,求出直线的方程;若不存在,说明理由.

查看答案和解析>>

(本小题满分13分)
已知椭圆上的一动点到右焦点的最短距离为,且右焦点到右准线的距离等于短半轴的长.
(Ⅰ) 求椭圆的方程;
(Ⅱ) 过点()的动直线交椭圆两点,试问:在坐标平面上是否存在一个定点,使得无论如何转动,以为直径的圆恒过定点?若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

(本小题满分13分)已知椭圆的离心率为,以原点为圆心,椭圆短半轴长为半径的圆与直线相切,分别是椭圆的左右两个顶点, 为椭圆上的动点.

(Ⅰ)求椭圆的标准方程;

(Ⅱ)若均不重合,设直线的斜率分别为,证明:为定值;

(Ⅲ)为过且垂直于轴的直线上的点,若,求点的轨迹方程,并说明轨迹是什么曲线.

 

查看答案和解析>>

本小题满分13分)已知圆,定点A(2,0),M为圆C上一动点,点P在AM上,点N在C、M上(C为圆心),且满足,设点N的轨迹为曲线E.

(1)求曲线E的方程;

(2)过点B(m,0)作倾斜角为的直线交曲线E于C、D两点.若点Q(1,0)恰在以线段CD为直径的圆的内部,求实数m的取值范围.

 

查看答案和解析>>

(本小题满分13分)已知椭圆C的中心在坐标原点,离心率,且其中一个焦点与抛物线的焦点重合.(Ⅰ)求椭圆C的方程;(Ⅱ)过点的动直线l交椭圆CA、B两点,试问:在坐标平面上是否存在一个定点T,使得无论l如何转动,以AB为直径的圆恒过点T,若存在,求出点T的坐标;若不存在,请说明理由.

 

 

查看答案和解析>>


同步练习册答案