题目列表(包括答案和解析)
(本小题满分12分) 已知椭圆()的左、右焦点分别为,为椭圆短轴的一个顶点,且是直角三角形,椭圆上任一点到左焦点的距离的最大值为
(1)求椭圆的方程;
(2)与两坐标轴都不垂直的直线:交椭圆于两点,且以线段为直径的圆恒过坐标原点,当面积的最大值时,求直线的方程.
(本小题满分12分)已知椭圆 的焦点在 轴上,一个顶点的坐标是,离心率等于 .
(Ⅰ)求椭圆 的方程;
(Ⅱ)过椭圆 的右焦点 作直线 交椭圆 于 两点,交 轴于点,若,,求证: 为定值.
(本小题满分12分) 已知椭圆()的左、右焦点分别为,为椭圆短轴的一个顶点,且是直角三角形,椭圆上任一点到左焦点的距离的最大值为
(1)求椭圆的方程;
(2)与两坐标轴都不垂直的直线:交椭圆于两点,且以线段为直径的圆恒过坐标原点,当面积的最大值时,求直线的方程.
( 本小题满分12分)
已知点是离心率为的椭圆:上的一点.斜率为的直线交椭圆于、两点,且、、三点不重合.
(Ⅰ)求椭圆的方程;
(Ⅱ)的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由?
(Ⅲ)求证:直线、的斜率之和为定值.
( 本小题满分12分)
已知点是离心率为的椭圆:上的一点.斜率为的直线交椭圆于、两点,且、、三点不重合.
(Ⅰ)求椭圆的方程;
(Ⅱ)的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由?
(Ⅲ)求证:直线、的斜率之和为定值.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com