题目列表(包括答案和解析)
4. m>2或m<-2 解析:因为f(x)=在(-1,1)内有零点,所以f(-1)f(1)<0,即(2+m)(2-m)<0,则m>2或m<-2
随机变量的所有等可能取值为1,2…,n,若,则( )
A. n=3 B.n=4 C. n=5 D.不能确定
5.m=-3,n=2 解析:因为的两零点分别是1与2,所以,即,解得
6.解析:因为只有一个零点,所以方程只有一个根,因此,所以
现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.
(Ⅰ)求这4个人中恰有2人去参加甲游戏的概率;
(Ⅱ)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;
(Ⅲ)用X,Y分别表示这4个人中去参加甲、乙游戏的人数,记,求随机变量的分布列与数学期望.
【解析】依题意,这4个人中,每个人去参加甲游戏的概率为,去参加乙游戏的概率为.
设“这4个人中恰有i人去参加甲游戏”为事件
则.
(1)这4个人中恰有2人去参加甲游戏的概率
(2)设“这4个人中去参加甲游戏的人数大于去参加乙游戏的人数”为事件B,则.由于互斥,故
所以,这个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率为.
(3)的所有可能取值为0,2,4.由于互斥,互斥,故
所以的分布列是
0 |
2 |
4 |
|
P |
随机变量的数学期望.
某校从参加高三年级理科综合物理考试的学生中随机抽出名学生,将其数学成绩(均为整数)分成六段,…后得到如下部分频率分布直方图.观察图形的信息,回答下列问题:
(Ⅰ)求分数在内的频率,并补全这个频率分布直方图;
(Ⅱ)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试的
平均分;
(Ⅲ)若从名学生中随机抽取人,抽到的学生成绩在记分,在记分,
在记分,用表示抽取结束后的总记分,求的分布列和数学期望.
【解析】(1)中利用直方图中面积和为1,可以求解得到分数在内的频率为
(2)中结合平均值可以得到平均分为:
(3)中用表示抽取结束后的总记分x, 学生成绩在的有人,在的有人,在的有人,结合古典概型的概率公式求解得到。
(Ⅰ)设分数在内的频率为,根据频率分布直方图,则有,可得,所以频率分布直方图如右图.……4分
(求解频率3分,画图1分)
(Ⅱ)平均分为:……7分
(Ⅲ)学生成绩在的有人,在的有人,
在的有人.并且的可能取值是. ………8分
则;; ;
;.(每个1分)
所以的分布列为
0 |
1 |
2 |
3 |
4 |
|
…………………13分
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com