20.解:(1) --------4分 (2)x可能取的所有值有2,3,4 --------5分 --------8分 ∴x的分布列为: ∴Ex= --------10分 (3)当时.取出的3张卡片上的数字为1,2,2或1,2,3 当取出的卡片上的数字为1,2,2或1,2,3的概率为. ∴ --------14分 查看更多

 

题目列表(包括答案和解析)

4. m>2或m<-2 解析:因为f(x)=在(-1,1)内有零点,所以f(-1)f(1)<0,即(2+m)(2-m)<0,则m>2或m<-2

随机变量的所有等可能取值为1,2…,n,若,则(    )

A. n=3        B.n=4          C. n=5        D.不能确定

5.m=-3,n=2 解析:因为的两零点分别是1与2,所以,即,解得

6.解析:因为只有一个零点,所以方程只有一个根,因此,所以

查看答案和解析>>

现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.

(Ⅰ)求这4个人中恰有2人去参加甲游戏的概率;

(Ⅱ)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;

(Ⅲ)用X,Y分别表示这4个人中去参加甲、乙游戏的人数,记,求随机变量的分布列与数学期望.

【解析】依题意,这4个人中,每个人去参加甲游戏的概率为,去参加乙游戏的概率为.

设“这4个人中恰有i人去参加甲游戏”为事件

.

(1)这4个人中恰有2人去参加甲游戏的概率

(2)设“这4个人中去参加甲游戏的人数大于去参加乙游戏的人数”为事件B,则.由于互斥,故

所以,这个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率为.

(3)的所有可能取值为0,2,4.由于互斥,互斥,故

    

所以的分布列是

0

2

4

P

随机变量的数学期望.

 

查看答案和解析>>

某校从参加高三年级理科综合物理考试的学生中随机抽出名学生,将其数学成绩(均为整数)分成六段后得到如下部分频率分布直方图.观察图形的信息,回答下列问题:

(Ⅰ)求分数在内的频率,并补全这个频率分布直方图;

(Ⅱ)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试的

平均分;

(Ⅲ)若从名学生中随机抽取人,抽到的学生成绩在分,在分,

分,用表示抽取结束后的总记分,求的分布列和数学期望.

【解析】(1)中利用直方图中面积和为1,可以求解得到分数在内的频率为

(2)中结合平均值可以得到平均分为:

(3)中用表示抽取结束后的总记分x, 学生成绩在的有人,在的有人,在的有人,结合古典概型的概率公式求解得到。

(Ⅰ)设分数在内的频率为,根据频率分布直方图,则有,可得,所以频率分布直方图如右图.……4分

(求解频率3分,画图1分)

(Ⅱ)平均分为:……7分

(Ⅲ)学生成绩在的有人,在的有人,

的有人.并且的可能取值是.    ………8分

.(每个1分)

所以的分布列为

0

1

2

3

4

…………………13分

 

查看答案和解析>>


同步练习册答案