曲线C:xy=1与直线l:y=x相交于A1,作A1B1⊥l交x轴于B1.作B1A2∥l交曲线C于A2-依此类推. (1)求点A1.A2.A3和B1.B2.B3的坐标, (2)猜想An的坐标.并加以证明, (3). 查看更多

 

题目列表(包括答案和解析)

已知曲线C:xy=1,过C上一点A1(x1,y1)作斜率k1的直线,交曲线C于另一点A2(x2,y2),再过A2(x2,y2)作斜率为k2的直线,交曲线C于另一点A3(x3,y3),…,过An(xn,yn)作斜率为kn的直线,交曲线C于另一点An+1(xn+1,yn+1)…,其中x1=1,kn=-
xn+1
x
2
n
+4xn
(x∈N*)

(1)求xn+1与xn的关系式;
(2)判断xn与2的大小关系,并证明你的结论;
(3)求证:|x1-2|+|x2-2|+…+|xn-2|<2.

查看答案和解析>>

若曲线C:xy=1,过C上一点An(xn,yn)作一斜率为kn=-
1
xn+2
的直线交曲线C于另一点An+1(xn+1,yn+1),点A1,A2,…,An,…的横坐标构成数列{xn},其中x1=
11
7

(1)求xn与xn+1的关系式;
(2)若f(x)=
1
x-2
,an=f(xn),求{an}的通项公式;
(3)求证:(-1)x1+(-1)2x2+…+(-1)nxn<1(n∈N*).

查看答案和解析>>

[选做题]在A、B、C、D四小题中只能选做2题,每小题10分,计20分.请把答案写在答题纸的指定区域内.
A.(选修4-1:几何证明选讲)
过圆O外一点P分别作圆的切线和割线交圆于A,B,且PB=7,∠ABP=∠ABC,C是圆上一点使得BC=5,求线段AB的长.
B.(选修4-2:矩阵与变换)
求曲线C:xy=1在矩阵
2
2
-
2
2
2
2
2
2
对应的变换作用下得到的曲线C′的方程.
C.(选修4-4:坐标系与参数方程)
已知曲线C1
x=3cosθ
y=2sinθ
(θ为参数)和曲线C2:ρsin(θ-
π
4
)=
2

(1)将两曲线方程分别化成普通方程;
(2)求两曲线的交点坐标.
D.(选修4-5:不等式选讲)
已知|x-a|<
c
4
,|y-b|<
c
6
,求证:|2x-3y-2a+3b|<c.

查看答案和解析>>

过P(1,0)做曲线C:xy=1,x∈(0,+∞),的切线,切点为Q1,设Q1在x轴上的投影为P1,又过P1做曲线C的切线,切点为Q2,设Q2在x轴上的投影为P2,…,依次下去得到一系列点Q1、Q2、Q3、…、Qn的横坐标为an
(1)求a1的值.
(2)求证数列{an}是等比数列.
(3)设bn=
16an+1316an-3
,问是否存在实数m,使得对于任意的正整数M,N,都有|bM-bN|<m恒成立.若存在,求出m;不存在,说明理由.

查看答案和解析>>

若曲线C:xy=1,过C上一点An(xn,yn)作一斜率为kn=-
1
xn+2
的直线交曲线C于另一点An+1(xn+1,yn+1),点A1,A2,…,An,…的横坐标构成数列{xn},其中x1=
11
7

(1)求xn与xn+1的关系式;
(2)若f(x)=
1
x-2
,an=f(xn),求{an}的通项公式;
(3)求证:(-1)x1+(-1)2x2+…+(-1)nxn<1(n∈N*).

查看答案和解析>>


同步练习册答案