题目列表(包括答案和解析)
设数列{an}前n项和为Sn,且(3-m)Sn+2man=m+3(n∈N*).其中m为实常数,m≠-3且m≠0.
(1)求证:{an}是等比数列;
(2)若数列{an}的公比满足q=f(m)且b1=a1,bn=f(bn-1)(n∈N*,n≥2),求{bn}的通项公式;
(3)若m=1时,设Tn=a1+2a2+3a3+……+nan(n∈N*),是否存在最大的正整数k,使得对任意n∈N*均有Tn>成立,若存在求出k的值,若不存在请说明理由.
设数列{an}前n项和为Sn,已知Sn=2an-2n+1(n∈N+).
(1)求数列{an}的通项公式;
(2)设bn=2,数列{bn}的前n项和为Bn,若存在正整数m,使对任意n∈N+且n≥2,都有B3n-Bn>成立,求m的最大值;
(3)令,数列{cn}的前n项和为Tn,求证:当n∈N+且n≥2时,
在数列{an}中,已知a1=1,且数列{an}的前n项和Sn满足4Sn+1-3Sn=4,n∈N*.
(1)证明数列{an}是等比数列;
(2)设数列{nan}的前n项和为Tn,若不等式对任意的n∈N*恒成立,求实数a的取值范围.
设Sn为数列{an}的前n项和,对任意的n∈N*,都有Sn=(m+1)-man(m为常数,且m>0).
(1)求证:数列{an}是等比数列;
(2)设数列{an}的公比q=f(n),数列{bn}满足b1=2a1,bn=f(bn-1)(n≥2,n∈N*),求数列{bn}的通项公式;
(3)在满足(2)的条件下,求数列的前n项和Tn.
在数列{an}与{bn}中,a1=1,b1=4,数列{an}的前n项和Sn满足nSn+1-(n+3)Sn=0,2an+1为bn与bn+1的等比中项,n∈N*.
(Ⅰ)求a2,b2的值;
(Ⅱ)求数列{an}与{bn}的通项公式;
(Ⅲ)设.证明|Tn|<2n2,n≥3.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com