题目列表(包括答案和解析)
如图,已知直线与抛物线相切于点P(2, 1),且与轴交于点A,定点B的坐标为(2, 0) .
(I)若动点M满足,求点M的轨迹C;
(II)若过点B的直线(斜率不等于零)与(I)中的轨迹C交于不同的两点E、F(E在B、F之间),试求OBE与OBF面积之比的取值范围.
如图,已知直线与抛物线相切于点P(2,1),且与x轴交于点A,O为
坐标原点,定点B的坐标为(2,0)。
(1)若动点M满足,求动点M的轨迹C 的方程;
(2)若过点B的直线(斜率不等于零)与(1)中的轨迹C交于不同的两点E、F(E在B、F之间),且,试求λ的取值范围。
已知直线l:y=x+m,m∈R.
(1)若以点M(2,0)为圆心的圆与直线l相切与点P,且点P在y轴上,求该圆的方程;
(2)若直线l关于x轴对称的直线为lˊ,问直线lˊ与抛物线C:是否相切?说明理由.
已知直线l1、l2分别与抛物线x2=4y相切于点A、B,且A、B两点的横坐标分别为a、b(a、b∈R).
(1)求直线l1、l2的方程;
(2)若l1、l2与x轴分别交于P、Q,且l1、l2交于点R,经过P、Q、R三点作圆C.
①当a=4,b=-2时,求圆C的方程;
②当a,b变化时,圆C是否过定点?若是,求出所有定点坐标;若不是,请说明理由.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com