题目列表(包括答案和解析)
(本小题满分12分)
某高校设计了一个实验学科的实验考查方案:考生从6道备选题中一次性随机抽取3题,按照题目要求独立完成全部实验操作。规定:至少正确完成其中2题的便可提交通过。已知6道备选题中考生甲有4道题能正确完成,2道题不能完成;考生乙每题正确完成的概率都是,且每题正确完成与否互不影响。
(Ⅰ)分别写出甲、乙两考生正确完成题数的概率分布列,并计算数学期望;
(Ⅱ)试从两位考生正确完成题数的数学期望及至少正确完成2题的概率分析比较两位考生的实验操作能力.
(本小题满分12分)
某高校设计了一个实验学科的实验考查方案:考生从6道备选题中一次性随机抽取3题,按照题目要求独立完成全部实验操作。规定:至少正确完成其中2题的便可提交通过。已知6道备选题中考生甲有4道题能正确完成,2道题不能完成;考生乙每题正确完成的概率都是,且每题正确完成与否互不影响。
(Ⅰ)分别写出甲、乙两考生正确完成题数的概率分布列,并计算数学期望;
(Ⅱ)试从两位考生正确完成题数的数学期望及至少正确完成2题的概率分析比较两位考生的实验操作能力.
(本小题满分12分)
道路交通安全法中将饮酒后违法驾驶机动车的行为分成两个档次:“酒后驾车”和“醉酒驾车”,其检测标准是驾驶人员血液中的酒精含量Q(简称血酒含量,单位是毫克/100毫升),当20≤Q<80时,为酒后驾车;当Q≥80时,为醉酒驾车.某市公安局交通管理部门在某路段的一次拦查行动中,依法检查了200辆机动车驾驶员的血酒含量,其中查处酒后驾车的有6人,查处醉酒驾车的有2人,依据上述材料回答下列问题:
(Ⅰ)分别写出违法驾车发生的频率和醉酒驾车占违法驾车总数的百分数;
(Ⅱ)从违法驾车的8人中抽取2人,求取到醉酒驾车人数的分布列和期望。
(Ⅲ)饮酒后违法驾驶机动车极易发生交通事故,假设酒后驾车和醉酒驾车发生交通事故的概率分别是0.1和0.25,且每位驾驶员是否发生交通事故是相互独立的。依此计算被查处的8名驾驶员中至少有一人发生交通事故的概率(列式)。
(本小题满分12分)
为了加快经济的发展,某市选择A、B两区作为龙头带动周边地区的发展,决定在A、B两区的周边修建城际快速通道,假设A、B两区相距个单位距离,城际快速通道所在的曲线为E,使快速通道E上的点到两区的距离之和为4个单位距离.
(Ⅰ)以线段AB的中点O为原点建立如图所示的直角坐标系,求城际快速通道所在曲线E的方程;
(Ⅱ)若有一条斜率为的笔直公路l与曲线E交于P,Q两点,同时在曲线E上建一个加油站M(横坐标为负值)满足,求面积的最大值.
(本小题满分12分)
2012年4月15日,央视《每周质量报告》曝光某省一些厂商用生石灰处理皮革废料,熬制成工业明胶,卖给一些药用胶囊生产企业,由于皮革在工业加工时,要使用含铬的鞣制剂,因此这样制成的胶囊,往往重金属铬超标,严重危害服用者的身体健康。该事件报道后,某市药监局立即成立调查组,要求所有的药用胶囊在进入市场前必须进行两轮检测,只有两轮都合格才能进行销售,否则不能销售,两轮检测是否合格相互没有影响。
(1)某药用胶囊共生产3个不同批次,经检测发现有2个批次为合格,另1个批次为不合格,现随机抽取该药用胶囊5件,求恰有2件不能销售的概率;
(2)若对某药用胶囊的3个不同批次分别进行两轮检测,药品合格的概率如下表:
|
第1批次 |
第2批次 |
第3批次 |
第一轮检测 |
|
|
|
第二轮检测 |
|
|
|
记该药用胶囊能通过检测进行销售的批次数为,求的分布列及数学期望
一.选择题
序号
1
2
3
4
5
6
7
8
9
10
11
12
答案
B
A
B
D
D
C
A
A
C
B
D
A
二填空题
13. 2或8; 14. ; 15.; 16..
三.解答题
17.解:(Ⅰ)
………………………………………………………………4分
…………………………6分
(Ⅱ) …………………………………………………8分
∴ …………………………………………………………………………10分
………………………………………………………………………………12分
18.解:(Ⅰ)在Rt△ABC中,AB=1,∠BAC=60°,∴BC=,AC=2.
在Rt△ACD中,AC=2,∠CAD=60°,∴CD=2,AD=4. ……………………………2分
∴=
.………………………………………………………………4分
则V=. ……………………………………………………………… 6分
(Ⅱ)∵PA=CA,F为PC的中点,∴AF⊥PC. ……………………………………8分
∵PA⊥平面ABCD,∴PA⊥CD.
∵AC⊥CD,PA∩AC=A,∴CD⊥平面PAC.∴CD⊥PC.
∵E为PD中点,F为PC中点,∴EF∥CD.则EF⊥PC. ………………………………10分
∵AF∩EF=F,∴PC⊥平面AEF.………………………………………………………………12分
19.设第一个匣子里的三把钥匙为A,B,C,第二个匣子里的三把钥匙为a,b,c(设A,a能打开所有门,B只能打开第一道门,b只能打开第二道门,C,c不能打开任何一道门)
(Ⅰ)第一道门打不开的概率为;……………………………………………………………5分
(Ⅱ)能进入第二道门的情况有Aa,Ab,Ac,Ba,Bb,而二把钥匙的不同情况有Aa,Ab,Ac,Ba,Bb,Bc,Ca,Cb,Cc共9种,故能进入第二道门的概率为……………………………………………………………12分
20.(Ⅰ)依题
即( …………………………………………………3分
故为等差数列,a1=1,d=2
………………………………………………………………………………………………5分
(Ⅱ)设公比为q,则由b1b2b3=8,bn>0…………………………………………………6分
又成等差数列
………………………………………………………………………………………8分
或…………………………………………………………………………………10分
或……………………………………………………………………12分
21解:(Ⅰ)依题PN为AM的中垂线
…………………………………………………2分
又C(-1,0),A(1,0)
所以N的轨迹E为椭圆,C、A为其焦点…………………………………………………………4分
a=,c=1,所以为所求………………………………………………………5分
(Ⅱ)设直线的方程为:y=k(x-1),代入椭圆E的方程:x2+2y2=2得:
(1+2k2)x2-4k2x+2k2-2=0………………(1)
设G(x1,y1)、H(x2,y2),则x1,x2是(1)的两个根.
…………………………………………………………7分
依题
………………………………………………………9分
解得:………………………………………………………………………12分
22.解法(一):
时, 即……①
⑴时,恒成立,
⑵时,①式化为……②
⑶时,①式化为……③…………………………………………………5分
记,则…………………………7分
所以
故由②,由③………………………………………………………………………13分
综上时,在恒成立.………………………………………………14分
解法(二):
时, 即……①
⑴时,,,不合题意…………………………………………………2分
⑵恒成立
∴在上为减函数,
得,矛盾,…………………………………………………………………………………5分
⑶,=
若则,,故在[-1,1]内,
,得,矛盾.
若
依题意, 解得 即
综上为所求.……………………………………………………………………………14分
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com