如图所示.两个质点在光滑的水平面上分别以一定的速度同时向右运动.此时分别作用水平向左的力.其中的大小不变.大小由零逐渐增大.它们恰好同时向右运动最远.且位移大小相等.在此过程中.两质点的瞬时速度与的关系应该是 A.. B.先.后.最后. C.. D.先.后.最后. 查看更多

 

题目列表(包括答案和解析)

精英家教网如图所示,质点P在正方形ABCD的四个顶点上按逆时针方向前进.现在投掷一个质地均匀.每个面上标有一个数字的正方体玩具,它的六个面上分别写有两个1.两个2.两个3一共六个数字.质点P从A点出发,规则如下:当正方体上底面出现的数字是1,质点P前进一步(如由A到B);当正方体上底面出现的数字是2,质点P前进两步(如由A到C),当正方体上底面出现的数字是3,质点P前进三步(如由A到D).在质点P转一圈之前连续投掷,若超过一圈,则投掷终止.
(1)求点P恰好返回到A点的概率;
(2)在点P转一圈恰能返回到A点的所有结果中,用随机变量S表示点P恰能返回到A点的投掷次数,求S的数学期望.

查看答案和解析>>

如图所示,质点P在正方形ABCD的四个顶点上按逆时针方向前进. 现在投掷一个质地均匀、每个面上标有一个数字的正方体玩具,它的六个面上分别写有两个1、两个2、两个3一共六个数字. 质点P从A点出发,规则如下:当正方体上底面出现的数字是1,质点P前进一步(如由A到B);当正方体上底面出现的数字是2,质点P前两步(如由A到C),当正方体上底面出现的数字是3,质点P前进三步(如由A到D). 在质点P转一圈之前连续投掷,若超过一圈,则投掷终止.
(1)求点P恰好返回到A点的概率;
(2)在点P转一圈恰能返回到A点的所有结果中,用随机变量ξ表示点P恰能返回到A点的投掷次数,求ξ的分布列及数学期望.

查看答案和解析>>

如图所示,质点P在正方形ABCD的四个顶点上按逆时针方向前进.现在投掷一个质地均匀、每个面上标有一个数字的正方体玩具,它的六个面上分别写有两个1、两个2、两个3一共六个数字.质点P从A点出发,规则如下:当正方体上底面出现的数字是1,质点P前进一步(如由A到B);当正方体上底面出现的数字是2,质点P前进两步(如由A到C);当正方体上底面出现的数字是3,质点P前进三步(如由A到D).在质点P转一圈之前连续投掷,若超过一圈,则投掷终止.
求:
(Ⅰ)需要四次投掷,点P恰返回到A点的概率;
(Ⅱ)点P恰好返回到A点的概率.

查看答案和解析>>

如图所示,质点P在正方形ABCD的四个顶点上按逆时针方向前进.现在投掷一个质地均匀、每个面上标有一个数字的正方体玩具,它的六个面上分别写有两个1、两个2、两个3一共六个数字.质点P从A点出发,规则如下:当正方体上底面出现的数字是1,质点P前进一步(如由A到B);当正方体上底面出现的数字是2,质点P前进两步(如由A到C),当正方体上底面出现的数字是3,质点P前进三步(如由A到D).在质点P转一圈之前连续投掷,若超过一圈,则投掷终止.

(1)求质点P恰好返回到A点的概率;

(2)在质点P转一圈恰能返回到A点的所有结果中,用随机变量ξ表示点P恰能返回到A点的投掷次数,求ξ的数学期望.

 

查看答案和解析>>

如图所示,质点P在正方形ABCD的四个顶点上按逆时针方向前进.现在投掷一个质地均匀、每个面上标有一个数字的正方体玩具,它的六个面上分别写有两个1、两个2、两个3一共六个数字.质点P从A点出发,规则如下:当正方体上底面出现的数字是1,质点P前进一步(如由A到B);当正方体上底面出现的数字是2,质点P前进两步(如由A到C),当正方体上底面出现的数字是3,质点P前进三步(如由A到D).在质点P转一圈之前连续投掷,若超过一圈,则投掷终止.

(1)求质点P恰好返回到A点的概率;

 (2)在质点P转一圈恰能返回到A点的所有结果中,用随机变量ξ表示点P恰能返回到A点的投掷次数,求ξ的数学期望.

 

查看答案和解析>>


同步练习册答案