1.已知两点A.过点P的直线与线段AB有公共点.则该直线的倾斜角的取值范围是 . 查看更多

 

题目列表(包括答案和解析)

(1)已知两点A(-1,-5),B(-1,2),直线l过P(3,2)且倾斜角是直线AB倾斜角的一半,求直线l的方程.

(2)过点P(1,4),作直线l与两坐标轴的正半轴相交,当直线l在两坐标轴上的截距之和为9时,求直线l方程.

查看答案和解析>>

已知倾斜角为45°的直线l过点A(1,-2)和点B,B在第一象限,|AB|=3
2

(1)求点B的坐标;
(2)若直线l与双曲线C:
x2
a2
-y2=1
(a>0)相交于E、F两点,且线段EF的中点坐标为(4,1),求a的值;
(3)对于平面上任一点P,当点Q在线段AB上运动时,称|PQ|的最小值为P与线段AB的距离.已知点P在x轴上运动,写出点P(t,0)到线段AB的距离h关于t的函数关系式.

查看答案和解析>>

已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的左顶点和右焦点分别为A,F,右准线为直线m,圆D:x2+y2-6y-4=0.
(1)若点A在圆D上,且椭圆C的离心率为
3
2
,求椭圆C的方程;
(2)若直线m上存在点Q,使△AFQ为等腰三角形,求椭圆C的离心率的取值范围;
(3)若点P在(1)中的椭圆C上,且过点P可作圆D的两条切线,切点分别为M、N,求弦长MN的取值范围.

查看答案和解析>>

已知双曲线G的中心在原点,它的渐近线与圆x2+y2-10x+20=0相切.过点P(-4,0)作斜率为
14
的直线l,使得l和G交于A,B两点,和y轴交于点C,并且点P在线段AB上,又满足|PA|•|PB|=|PC|2
(1)求双曲线G的渐近线的方程;
(2)求双曲线G的方程;
(3)椭圆S的中心在原点,它的短轴是G的实轴.如果S中垂直于l的平行弦的中点的轨迹恰好是G的渐近线截在S内的部分,求椭圆S的方程.

查看答案和解析>>

已知椭圆C的中心在坐标原点,椭圆C任意一点P到两个焦点F1(-
3
,0)
F2(
3
,0)
的距离之和为4.
(1)求椭圆C的方程;
(2)设过(0,-2)的直线l与椭圆C交于A、B两点,且
OA
OB
=0
(O为坐标原点),求直线l的方程.

查看答案和解析>>


同步练习册答案