9.设h∈N+.数列{an}定义为:a0=1, an+1=.问:对于怎样的h.存在大于0的整数n.使得an=1? 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)=x2+(a-3)x+a2-3a(a为常数).
(1)如果对任意x∈[1,2],f(x)>a2恒成立,求实数a的取值范围;
(2)设实数p,q,r满足:p,q,r中的某一个数恰好等于a,且另两个恰为方程f(x)=0的两实根,判断①p+q+r,②p2+q2+r2,③p3+q3+r3是否为定值?若是定值请求出:若不是定值,请把不是定值的表示为函数g(a),并求g(a)的最小值;
(3)对于(2)中的g(a),设H(a)=-
16
[g(a)-27]
,数列{an}满足an+1=H(an)(n∈N*),且a1∈(0,1),试判断an+1与an的大小,并证明之.

查看答案和解析>>

已知幂函数y=xm2-2m-3(m∈N+)的图象与x轴,y轴无交点且关于原点对称,又有函数f(x)=x2-alnx+m-2在(1,2]上是增函数,g(x)=x-a
x
在(0,1)上为减函数.
①求a的值;
②若
1
p(x)
=2f′(x)-2x+
5
x
+1
,数列{an}满足a1=1,an+1=p(an),(n∈N+),数列{bn},满足bn=
1
2
anan+13n
,sn=b1+b2+b3+…+bn,求数列{an}的通项公式an和sn
③设h(x)=f′(x)-g(x)-2
x
+
3
x
,试比较[h(x)]n+2与h(xn)+2n的大小(n∈N+),并说明理由.

查看答案和解析>>

奇函数f(x)=
ax2+bx+1
cx+d
 (x≠0,a>1)
,且当x>0时,f(x)有最小值2
2
,又f(1)=3.
(1)求f(x)的表达式;
(2)设g(x)=xf(x),正数数列{an}中,a1=1,an+12=g(an),求数列{an}的通项公式;
(3)设h(x)=
1
2
f(x)-
3
2x
,数列{bn}中b1=m(m>0),bn+1=h(bn)(n∈N*).是否存在常数m使bn•bn+1>0对任意n∈N*恒成立.若存在,求m的取值范围,若不存在,说明理由.

查看答案和解析>>

设f(n,p)=C2np(n,p∈N,p≤2n).数列{a(n,p)}满足a(1,p)+a(2,p)+…+a(n,p)=f(n,p).
(1)求证:{a(n,2)}是等差数列;
(2)求证:f(n,1)+f(n,2)+…+f(n,n)=22n-1+
12
C2nn-1;
(3)设函数H(x)=f(n,1)x+f(n,2)x2+…+f(n,2n)x2n,试比较H(x)-H(a)与2n(1+a)2n-1(x-a)的大小.

查看答案和解析>>

设f(n,p)=C2np(n,p∈N,p≤2n).数列{a(n,p)}满足a(1,p)+a(2,p)+…+a(n,p)=f(n,p).
(1)求证:{a(n,2)}是等差数列;
(2)求证:f(n,1)+f(n,2)+…+f(n,n)=22n-1+C2nn-1;
(3)设函数H(x)=f(n,1)x+f(n,2)x2+…+f(n,2n)x2n,试比较H(x)-H(a)与2n(1+a)2n-1(x-a)的大小.

查看答案和解析>>


同步练习册答案