10.设{ak}k≥1为一非负整数列.且对任意k≥1.满足ak≥a2k+a2k+1.(1)求证:对任意正整数n.数列中存在n个连续项为0,(2)求出一个满足以上条件.且其存在无限个非零项的数列. 查看更多

 

题目列表(包括答案和解析)

(2011•杭州一模)设f(n)=
n2,(n为奇数)
-n2,(n为偶数)
(n∈N+),若an=f(n)+f(n+1),则a1+a2+…+ak=
k,(k为偶数)
-k-2,(k为奇数)
k,(k为偶数)
-k-2,(k为奇数)
(k∈N+

查看答案和解析>>

(2013•大兴区一模)已知数列{an}的各项均为正整数,且a1<a2<…<an,设集合Ak={x|x=
n
i=1
 
λiai,λi=-1或λi=0,或λi=1}(1≤k≤n).
性质1:若对于?x∈Ak,存在唯一一组λi,(i=1,2,…,k)使x=
n
i=1
 
λiai成立,则称数列{an}为完备数列,当k取最大值时称数列{an}为k阶完备数列.
性质2:若记mk=
n
i=1
 
ai(1≤k≤n),且对于任意|x|≤mk,k∈Z,都有x∈AK成立,则称数列P{an}为完整数列,当k取最大值时称数列{an}为k阶完整数列.
性质3:若数列{an}同时具有性质1及性质2,则称此数列{an}为完美数列,当K取最大值时{an}称为K阶完美数列;
(Ⅰ)若数列{an}的通项公式为an=2n-1,求集合A2,并指出{an}分别为几阶完备数列,几阶完整数列,几阶完美数列;
(Ⅱ)若数列{an}的通项公式为an=10n-1,求证:数列{an}为n阶完备数列,并求出集合An中所有元素的和Sn
(Ⅲ)若数列{an}为n阶完美数列,试写出集合An,并求数列{an}通项公式.

查看答案和解析>>

11、如果有穷数列a1,a2,…,an(n为正整数)满足条件a1=an,a2=an-1…,an=a1,即ak=an-k+1(k=1,2 …,n ),我们称其为“对称数列”.设{bn}是项数为7的“对称数列”,其中b1,b2,b3,b4成等差数列,且b1=2,b2+b4=16,依次写出{bn}的每一项
2,5,8,11,8,5,2

查看答案和解析>>

设数列{an}是有穷等差数列,给出下面数表:
a1  a2    a3     …an-1  an 第1行
a1+a2   a2+a3   …an-1+an  第2行


…第n行
上表共有n行,其中第1行的n个数为a1,a2,a3…an,从第二行起,每行中的每一个数都等于它肩上两数之和.记表中各行的数的平均数(按自上而下的顺序)分别为b1,b2,b3…bn
(1)求证:数列b1,b2,b3…bn成等比数列;
(2)若ak=2k-1(k=1,2,…,n),求和
nk=1
akbk

查看答案和解析>>

设数列{an}是有穷等差数列,给出下面数表:上表共有n行,其中第1行的n个数为a1,a2,a3,…,an,从第二行起,每行中的每一个数都等于它肩上两数之和.记表中各行的数的平均数(按自上而下的顺序)分别为b1,b2,…,bn
(1)求证:数列b1,b2,…,bn成等比数列;
(2)若ak=2k-1(k=1,2,…,n),求和
nk=1
akbk
精英家教网

查看答案和解析>>


同步练习册答案