11.求证:存在唯一的正整数数列a1,a2,-,使得 a1=1, a2>1, an+1(an+1-1)= 查看更多

 

题目列表(包括答案和解析)

已知数列{an},{bn} 满足:a1=0,b1=2013,且对任意的正整数 n,an,an+1,bn 和 an+1,bn+1,bn均成等差数列.
(1)求 a2,b2的值;
(2)证明:{an-bn}和{an+2bn} 均成等比数列;
(3)是否存在唯一的正整数 c,使得 an<c<bn恒成立?证明你的结论.

查看答案和解析>>

(2013•深圳二模)已知数列{an},{bn} 满足:a1=0,b1=2013,且对任意的正整数 n,an,an+1,bn 和 an+1,bn+1,bn均成等差数列.
(1)求 a2,b2的值;
(2)证明:{an-bn}和{an+2bn} 均成等比数列;
(3)是否存在唯一的正整数 c,使得 an<c<bn恒成立?证明你的结论.

查看答案和解析>>

(2013•大兴区一模)已知数列{an}的各项均为正整数,且a1<a2<…<an,设集合Ak={x|x=
n
i=1
 
λiai,λi=-1或λi=0,或λi=1}(1≤k≤n).
性质1:若对于?x∈Ak,存在唯一一组λi,(i=1,2,…,k)使x=
n
i=1
 
λiai成立,则称数列{an}为完备数列,当k取最大值时称数列{an}为k阶完备数列.
性质2:若记mk=
n
i=1
 
ai(1≤k≤n),且对于任意|x|≤mk,k∈Z,都有x∈AK成立,则称数列P{an}为完整数列,当k取最大值时称数列{an}为k阶完整数列.
性质3:若数列{an}同时具有性质1及性质2,则称此数列{an}为完美数列,当K取最大值时{an}称为K阶完美数列;
(Ⅰ)若数列{an}的通项公式为an=2n-1,求集合A2,并指出{an}分别为几阶完备数列,几阶完整数列,几阶完美数列;
(Ⅱ)若数列{an}的通项公式为an=10n-1,求证:数列{an}为n阶完备数列,并求出集合An中所有元素的和Sn
(Ⅲ)若数列{an}为n阶完美数列,试写出集合An,并求数列{an}通项公式.

查看答案和解析>>


同步练习册答案