题目列表(包括答案和解析)
第六部分 振动和波
第一讲 基本知识介绍
《振动和波》的竞赛考纲和高考要求有很大的不同,必须做一些相对详细的补充。
一、简谐运动
1、简谐运动定义:= -k ①
凡是所受合力和位移满足①式的质点,均可称之为谐振子,如弹簧振子、小角度单摆等。
谐振子的加速度:= -
2、简谐运动的方程
回避高等数学工具,我们可以将简谐运动看成匀速圆周运动在某一条直线上的投影运动(以下均看在x方向的投影),圆周运动的半径即为简谐运动的振幅A 。
依据:x = -mω2Acosθ= -mω2
对于一个给定的匀速圆周运动,m、ω是恒定不变的,可以令:
mω2 = k
这样,以上两式就符合了简谐运动的定义式①。所以,x方向的位移、速度、加速度就是简谐运动的相关规律。从图1不难得出——
位移方程: = Acos(ωt + φ) ②
速度方程: = -ωAsin(ωt +φ) ③
加速度方程:= -ω2A cos(ωt +φ) ④
相关名词:(ωt +φ)称相位,φ称初相。
运动学参量的相互关系:= -ω2
A =
tgφ= -
3、简谐运动的合成
a、同方向、同频率振动合成。两个振动x1 = A1cos(ωt +φ1)和x2 = A2cos(ωt +φ2) 合成,可令合振动x = Acos(ωt +φ) ,由于x = x1 + x2 ,解得
A = ,φ= arctg
显然,当φ2-φ1 = 2kπ时(k = 0,±1,±2,…),合振幅A最大,当φ2-φ1 = (2k + 1)π时(k = 0,±1,±2,…),合振幅最小。
b、方向垂直、同频率振动合成。当质点同时参与两个垂直的振动x = A1cos(ωt + φ1)和y = A2cos(ωt + φ2)时,这两个振动方程事实上已经构成了质点在二维空间运动的轨迹参数方程,消去参数t后,得一般形式的轨迹方程为
+-2cos(φ2-φ1) = sin2(φ2-φ1)
显然,当φ2-φ1 = 2kπ时(k = 0,±1,±2,…),有y = x ,轨迹为直线,合运动仍为简谐运动;
当φ2-φ1 = (2k + 1)π时(k = 0,±1,±2,…),有+= 1 ,轨迹为椭圆,合运动不再是简谐运动;
当φ2-φ1取其它值,轨迹将更为复杂,称“李萨如图形”,不是简谐运动。
c、同方向、同振幅、频率相近的振动合成。令x1 = Acos(ω1t + φ)和x2 = Acos(ω2t + φ) ,由于合运动x = x1 + x2 ,得:x =(2Acost)cos(t +φ)。合运动是振动,但不是简谐运动,称为角频率为的“拍”现象。
4、简谐运动的周期
由②式得:ω= ,而圆周运动的角速度和简谐运动的角频率是一致的,所以
T = 2π ⑤
5、简谐运动的能量
一个做简谐运动的振子的能量由动能和势能构成,即
= mv2 + kx2 = kA2
注意:振子的势能是由(回复力系数)k和(相对平衡位置位移)x决定的一个抽象的概念,而不是具体地指重力势能或弹性势能。当我们计量了振子的抽象势能后,其它的具体势能不能再做重复计量。
6、阻尼振动、受迫振动和共振
和高考要求基本相同。
二、机械波
1、波的产生和传播
产生的过程和条件;传播的性质,相关参量(决定参量的物理因素)
2、机械波的描述
a、波动图象。和振动图象的联系
b、波动方程
如果一列简谐波沿x方向传播,振源的振动方程为y = Acos(ωt + φ),波的传播速度为v ,那么在离振源x处一个振动质点的振动方程便是
y = Acos〔ωt + φ - ·2π〕= Acos〔ω(t - )+ φ〕
这个方程展示的是一个复变函数。对任意一个时刻t ,都有一个y(x)的正弦函数,在x-y坐标下可以描绘出一个瞬时波形。所以,称y = Acos〔ω(t - )+ φ〕为波动方程。
3、波的干涉
a、波的叠加。几列波在同一介质种传播时,能独立的维持它们的各自形态传播,在相遇的区域则遵从矢量叠加(包括位移、速度和加速度的叠加)。
b、波的干涉。两列波频率相同、相位差恒定时,在同一介质中的叠加将形成一种特殊形态:振动加强的区域和振动削弱的区域稳定分布且彼此隔开。
我们可以用波程差的方法来讨论干涉的定量规律。如图2所示,我们用S1和S2表示两个波源,P表示空间任意一点。
当振源的振动方向相同时,令振源S1的振动方程为y1 = A1cosωt ,振源S1的振动方程为y2 = A2cosωt ,则在空间P点(距S1为r1 ,距S2为r2),两振源引起的分振动分别是
y1′= A1cos〔ω(t ? )〕
y2′= A2cos〔ω(t ? )〕
P点便出现两个频率相同、初相不同的振动叠加问题(φ1 = ,φ2 = ),且初相差Δφ= (r2 – r1)。根据前面已经做过的讨论,有
r2 ? r1 = kλ时(k = 0,±1,±2,…),P点振动加强,振幅为A1 + A2 ;
r2 ? r1 =(2k ? 1)时(k = 0,±1,±2,…),P点振动削弱,振幅为│A1-A2│。
4、波的反射、折射和衍射
知识点和高考要求相同。
5、多普勒效应
当波源或者接受者相对与波的传播介质运动时,接收者会发现波的频率发生变化。多普勒效应的定量讨论可以分为以下三种情况(在讨论中注意:波源的发波频率f和波相对介质的传播速度v是恒定不变的)——
a、只有接收者相对介质运动(如图3所示)
设接收者以速度v1正对静止的波源运动。
如果接收者静止在A点,他单位时间接收的波的个数为f ,
当他迎着波源运动时,设其在单位时间到达B点,则= v1 ,、
在从A运动到B的过程中,接收者事实上“提前”多接收到了n个波
n = = =
显然,在单位时间内,接收者接收到的总的波的数目为:f + n = f ,这就是接收者发现的频率f1 。即
f1 = f
显然,如果v1背离波源运动,只要将上式中的v1代入负值即可。如果v1的方向不是正对S ,只要将v1出正对的分量即可。
b、只有波源相对介质运动(如图4所示)
设波源以速度v2正对静止的接收者运动。
如果波源S不动,在单位时间内,接收者在A点应接收f个波,故S到A的距离:= fλ
在单位时间内,S运动至S′,即= v2 。由于波源的运动,事实造成了S到A的f个波被压缩在了S′到A的空间里,波长将变短,新的波长
λ′= = = =
而每个波在介质中的传播速度仍为v ,故“被压缩”的波(A接收到的波)的频率变为
f2 = = f
当v2背离接收者,或有一定夹角的讨论,类似a情形。
c、当接收者和波源均相对传播介质运动
当接收者正对波源以速度v1(相对介质速度)运动,波源也正对接收者以速度v2(相对介质速度)运动,我们的讨论可以在b情形的过程上延续…
f3 = f2 = f
关于速度方向改变的问题,讨论类似a情形。
6、声波
a、乐音和噪音
b、声音的三要素:音调、响度和音品
c、声音的共鸣
第二讲 重要模型与专题
一、简谐运动的证明与周期计算
物理情形:如图5所示,将一粗细均匀、两边开口的U型管固定,其中装有一定量的水银,汞柱总长为L 。当水银受到一个初始的扰动后,开始在管中振动。忽略管壁对汞的阻力,试证明汞柱做简谐运动,并求其周期。
模型分析:对简谐运动的证明,只要以汞柱为对象,看它的回复力与位移关系是否满足定义式①,值得注意的是,回复力系指振动方向上的合力(而非整体合力)。当简谐运动被证明后,回复力系数k就有了,求周期就是顺理成章的事。
本题中,可设汞柱两端偏离平衡位置的瞬时位移为x 、水银密度为ρ、U型管横截面积为S ,则次瞬时的回复力
ΣF = ρg2xS = x
由于L、m为固定值,可令: = k ,而且ΣF与x的方向相反,故汞柱做简谐运动。
周期T = 2π= 2π
答:汞柱的周期为2π 。
学生活动:如图6所示,两个相同的柱形滚轮平行、登高、水平放置,绕各自的轴线等角速、反方向地转动,在滚轮上覆盖一块均质的木板。已知两滚轮轴线的距离为L 、滚轮与木板之间的动摩擦因素为μ、木板的质量为m ,且木板放置时,重心不在两滚轮的正中央。试证明木板做简谐运动,并求木板运动的周期。
思路提示:找平衡位置(木板重心在两滚轮中央处)→ú力矩平衡和Σ?F6= 0结合求两处弹力→ú求摩擦力合力…
答案:木板运动周期为2π 。
巩固应用:如图7所示,三根长度均为L = 2.00m地质量均匀直杆,构成一正三角形框架ABC,C点悬挂在一光滑水平轴上,整个框架可绕转轴转动。杆AB是一导轨,一电动松鼠可在导轨上运动。现观察到松鼠正在导轨上运动,而框架却静止不动,试讨论松鼠的运动是一种什么样的运动。
解说:由于框架静止不动,松鼠在竖直方向必平衡,即:松鼠所受框架支持力等于松鼠重力。设松鼠的质量为m ,即:
N = mg ①
再回到框架,其静止平衡必满足框架所受合力矩为零。以C点为转轴,形成力矩的只有松鼠的压力N、和松鼠可能加速的静摩擦力f ,它们合力矩为零,即:
MN = Mf
现考查松鼠在框架上的某个一般位置(如图7,设它在导轨方向上距C点为x),上式即成:
N·x = f·Lsin60° ②
解①②两式可得:f = x ,且f的方向水平向左。
根据牛顿第三定律,这个力就是松鼠在导轨方向上的合力。如果我们以C在导轨上的投影点为参考点,x就是松鼠的瞬时位移。再考虑到合力与位移的方向因素,松鼠的合力与位移满足关系——
= -k
其中k = ,对于这个系统而言,k是固定不变的。
显然这就是简谐运动的定义式。
答案:松鼠做简谐运动。
评说:这是第十三届物理奥赛预赛试题,问法比较模糊。如果理解为定性求解,以上答案已经足够。但考虑到原题中还是有定量的条件,所以做进一步的定量运算也是有必要的。譬如,我们可以求出松鼠的运动周期为:T = 2π = 2π = 2.64s 。
二、典型的简谐运动
1、弹簧振子
物理情形:如图8所示,用弹性系数为k的轻质弹簧连着一个质量为m的小球,置于倾角为θ
【选做题】本题包括A、B、C三小题,请选定其中两题,并在答题卡相应的答题区域内作答.若三题都做,则按A、B两题评分.
A.(选修模块3—3)(12分)
(1)(4分)判断以下说法的正误,在相应的括号内打“√”或“×”。
(A)用手捏面包,面包体积会缩小,说明分子之间有间隙。( )
(B)温度相同的氢气和氧气,氢气分子和氧气分子的平均速率相同。( )
(C)夏天荷叶上小水珠呈球状,是由于液体表面张力使其表面积具有收缩到最小趋势的缘故。( )
(D)自然界中进行的一切与热现象有关的宏观过程都具有方向性。( )
(2)(4分)在“用油膜法估测分子的大小”的实验中,有下列操作步骤,请补充实验步骤的内容及实验步骤中的计算式:
(A)用滴管将浓度为的油酸酒精溶液逐滴滴入量筒,记下的油酸酒精溶液的滴数;
(B)将痱子粉末均匀地撒在浅盘内的水面上,用滴管吸取浓度为的油酸酒精溶液,逐滴向水面上滴入,直到油酸薄膜表面足够大,且不与器壁接触为止,记下滴入的滴数;
(C)________________▲________________;
(D)将画有油酸薄膜轮廓的玻璃板放在坐标纸上,以坐标纸上边长的正方形为单位,计算轮廓内正方形的个数;
(E)用上述测量的物理量可以估算出单个油酸分子的直径__▲____。
(3)如图所示,上端开口的光滑圆柱形气缸竖直放置,截面积为40cm2的活塞将
一定质量的气体和一形状不规则的固体A封闭在气缸内。在气缸内距缸底60cm
处设有卡环ab,使活塞只能向上滑动。开始时活塞搁在ab上,缸内气体的压
强等于大气压强为p0=1.0×105Pa,温度为300K。现缓慢加热汽缸内气体,当
温度缓慢升高为330K,活塞恰好离开ab;当温度缓慢升高为360K时,活塞上
升了4cm。求:
(1)活塞的质量;
(2)整个过程中气体对外界做的功。
B.(选修模块3—4)(12分)
(1)(4分)判断以下说法的正误,在相应的括号内打“√”或“×”。
(A)光速不变原理是狭义相对论的两个基本假设之一。( )
(B)拍摄玻璃橱窗内的物品时,往往在镜头前加一个偏振片以增加透射光的强度。( )
(C)光在介质中的速度大于光在真空中的速度。( )
(D)变化的电场一定产生变化的磁场;变化的磁场一定产生变化的电场。( )
(2)(4分)如图为一横波发生器的显示屏,可以显示出波由0点从左向右传播的图像,屏上每一小格长度为1cm。在t=0时刻横波发生器上能显示的波形如图所示。因为显示屏的局部故障,造成从水平位置A到B之间(不包括A、B两处)的波形无法被观察到(故障不影响波在发生器内传播)。此后的时间内,观察者看到波形相继传经B、C处,在t=5秒时,观察者看到C处恰好第三次(从C开始振动后算起)出现平衡位置,则该波的波速可能是
(A)3.6cm/s (B)4.8cm/s
(C)6cm/s (D)7.2cm/s
(3)(4分)如图所示,某同学用插针法测定一半圆形玻璃砖的折射率。在平铺的白纸上垂直纸面插大头针、确定入射光线,并让入射光线过圆心,在玻璃砖(图中实线部分)另一侧垂直纸面插大头针,使挡住、的像,连接。图中为分界面,虚线半圆与玻璃砖对称,、分别是入射光线、折射光线与圆的交点,、均垂直于法线并分别交法线于、点。设的长度为,的长度为,的长度为,的长度为,求:
①为较方便地表示出玻璃砖的折射率,需用刻度尺测量(用上述给
出量的字母表示),
②玻璃砖的折射率
C.(选修模块3—5)(12分)
(1)下列说法中正确的是___▲_____
(A)X射线是处于激发态的原子核辐射出的
(B)放射性元素发生一次β衰变,原子序数增加1
(C)光电效应揭示了光具有粒子性,康普顿效应揭示了光具有波动性
(D)原子核的半衰期不仅与核内部自身因素有关,还与原子所处的化学状态
有关
(2)氢原子的能级如图所示,当氢原子从n=4向n=2的能级跃迁时,辐射的光
子照射在某金属上,刚好能发生光电效应,则该金属的逸出功为 ▲ eV。
现有一群处于n=5的能级的氢原子向低能级跃迁,在辐射出的各种频率的
光子中,能使该金属发生光电效应的频率共有 ▲ 种。
(3)如图,质量为m的小球系于长L=0.8m的轻绳末端。绳的另一端
系于O点。将小球移到轻绳水平位置后释放,小球摆到最低点A
时,恰与原静止于水平面上的物块P相碰。碰后小球回摆,上升的
最高点为B,A、B的高度差为h=0.2m。已知P的质量为M=3m,
P与水平面间的动摩擦因数为μ=0.25,小球与P的相互作用时间
极短。求P沿水平面滑行的距离。
【选做题】本题包括A、B、C三小题,请选定其中两题,并在答题卡相应的答题区域内作答.若三题都做,则按A、B两题评分.
A.(选修模块3—3)(12分)
(1)(4分)判断以下说法的正误,在相应的括号内打“√”或“×”。
(A)用手捏面包,面包体积会缩小,说明分子之间有间隙。( )
(B)温度相同的氢气和氧气,氢气分子和氧气分子的平均速率相同。( )
(C)夏天荷叶上小水珠呈球状,是由于液体表面张力使其表面积具有收缩到最小趋势的缘故。( )
(D)自然界中进行的一切与热现象有关的宏观过程都具有方向性。( )
(2)(4分)在“用油膜法估测分子的大小”的实验中,有下列操作步骤,请补充实验步骤的内容及实验步骤中的计算式:
(A)用滴管将浓度为的油酸酒精溶液逐滴滴入量筒,记下的油酸酒精溶液的滴数;
(B)将痱子粉末均匀地撒在浅盘内的水面上,用滴管吸取浓度为的油酸酒精溶液,逐滴向水面上滴入,直到油酸薄膜表面足够大,且不与器壁接触为止,记下滴入的滴数;
(C)________________▲________________;
(D)将画有油酸薄膜轮廓的玻璃板放在坐标纸上,以坐标纸上边长的正方形为单位,计算轮廓内正方形的个数;
(E)用上述测量的物理量可以估算出单个油酸分子的直径__▲____。
(3)如图所示,上端开口的光滑圆柱形气缸竖直放置,截面积为40cm2的活塞将
一定质量的气体和一形状不规则的固体A封闭在气缸内。在气缸内距缸底60cm
处设有卡环ab,使活塞只能向上滑动。开始时活塞搁在ab上,缸内气体的压
强等于大气压强为p0=1.0×105Pa,温度为300K。现缓慢加热汽缸内气体,当
温度缓慢升高为330K,活塞恰好离开ab;当温度缓慢升高为360K时,活塞上
升了4cm。求:
(1)活塞的质量;
(2)整个过程中气体对外界做的功。
B.(选修模块3—4)(12分)
(1)(4分)判断以下说法的正误,在相应的括号内打“√”或“×”。
(A)光速不变原理是狭义相对论的两个基本假设之一。( )
(B)拍摄玻璃橱窗内的物品时,往往在镜头前加一个偏振片以增加透射光的强度。( )
(C)光在介质中的速度大于光在真空中的速度。( )
(D)变化的电场一定产生变化的磁场;变化的磁场一定产生变化的电场。( )
(2)(4分)如图为一横波发生器的显示屏,可以显示出波由0点从左向右传播的图像,屏上每一小格长度为1cm。在t=0时刻横波发生器上能显示的波形如图所示。因为显示屏的局部故障,造成从水平位置A到B之间(不包括A、B两处)的波形无法被观察到(故障不影响波在发生器内传播)。此后的时间内,观察者看到波形相继传经B、C处,在t=5秒时,观察者看到C处恰好第三次(从C开始振动后算起)出现平衡位置,则该波的波速可能是
(A)3.6cm/s (B)4.8cm/s
(C)6cm/s (D)7.2cm/s
(3)(4分)如图所示,某同学用插针法测定一半圆形玻璃砖的折射率。在平铺的白纸上垂直纸面插大头针、确定入射光线,并让入射光线过圆心,在玻璃砖(图中实线部分)另一侧垂直纸面插大头针,使挡住、的像,连接。图中为分界面,虚线半圆与玻璃砖对称,、分别是入射光线、折射光线与圆的交点,、均垂直于法线并分别交法线于、点。设的长度为,的长度为,的长度为,的长度为,求:
①为较方便地表示出玻璃砖的折射率,需用刻度尺测量(用上述给
出量的字母表示),
②玻璃砖的折射率
C.(选修模块3—5)(12分)
(1)下列说法中正确的是___▲_____
(A)X射线是处于激发态的原子核辐射出的
(B)放射性元素发生一次β衰变,原子序数增加1
(C)光电效应揭示了光具有粒子性,康普顿效应揭示了光具有波动性
(D)原子核的半衰期不仅与核内部自身因素有关,还与原子所处的化学状态
有关
(2)氢原子的能级如图所示,当氢原子从n=4向n=2的能级跃迁时,辐射的光
子照射在某金属上,刚好能发生光电效应,则该金属的逸出功为 ▲ eV。
现有一群处于n=5的能级的氢原子向低能级跃迁,在辐射出的各种频率的
光子中,能使该金属发生光电效应的频率共有 ▲ 种。
(3)如图,质量为m的小球系于长L=0.8m的轻绳末端。绳的另一端
系于O点。将小球移到轻绳水平位置后释放,小球摆到最低点A
时,恰与原静止于水平面上的物块P相碰。碰后小球回摆,上升的
最高点为B,A、B的高度差为h=0.2m。已知P的质量为M=3m,
P与水平面间的动摩擦因数为μ=0.25,小球与P的相互作用时间
极短。求P沿水平面滑行的距离。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com