若函数.的值恒大于4.则实数m的取值范围是 . 查看更多

 

题目列表(包括答案和解析)


选作题,请考生在第(22)、(23)、(24)三题中任选一题做答,如果多做,则按所做的第一题记分,每道题满分10分)
22、选修4—1:几何证明选讲
如图,△ABC的角平分线AD的延长线交于的外按圆于点E。
(I)证明:△ABC∽△ADC
(II)若△ABC的面积为AD·AE,求∠BAC的大小。

23、选修4—4:坐标系与参数方程
已知半圆C的参数方程为参数且(0≤
P为半圆C上一点,A(1,0)O为坐标原点,点M在射线OP上,线段OM与  的长度均为
(I)求以O为极点,轴为正半轴为极轴建立极坐标系求点M的极坐标。
(II)求直线AM的参数方程。
24、选修4—5,不等式选讲
已知函数  
(I)若不等式的解集为求a值。
(II)在(I) 条件下,若对一切实数恒成立,求实数m的取值范围。

查看答案和解析>>


选作题,请考生在第(22)、(23)、(24)三题中任选一题做答,如果多做,则按所做的第一题记分,每道题满分10分)
22、选修4—1:几何证明选讲
如图,△ABC的角平分线AD的延长线交于的外按圆于点E。
(I)证明:△ABC∽△ADC
(II)若△ABC的面积为AD·AE,求∠BAC的大小。

23、选修4—4:坐标系与参数方程
已知半圆C的参数方程为参数且(0≤
P为半圆C上一点,A(1,0)O为坐标原点,点M在射线OP上,线段OM与  的长度均为
(I)求以O为极点,轴为正半轴为极轴建立极坐标系求点M的极坐标。
(II)求直线AM的参数方程。
24、选修4—5,不等式选讲
已知函数  
(I)若不等式的解集为求a值。
(II)在(I) 条件下,若对一切实数恒成立,求实数m的取值范围。

查看答案和解析>>

本题有(1).(2).(3)三个选做题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.

(1)(本小题满分7分)选修4-2:矩阵与变换选做题

已知矩阵A=有一个属于特征值1的特征向量.  

(Ⅰ) 求矩阵A;

(Ⅱ) 矩阵B=,点O(0,0),M(2,-1),N(0,2),求在矩阵AB的对应变换作用下所得到的的面积. 

(2)(本小题满分7分)选修4-4:坐标系与参数方程选做题

在直角坐标平面内,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系.已知曲线的参数方程为,曲线的极坐标方程为

(Ⅰ)将曲线的参数方程化为普通方程;(Ⅱ)判断曲线与曲线的交点个数,并说明理由.

(3)(本小题满分7分)选修4-5:不等式选讲选做题

已知函数,不等式上恒成立.

(Ⅰ)求的取值范围;

(Ⅱ)记的最大值为,若正实数满足,求的最大值.

 

查看答案和解析>>

给出下列四个判断:
①定义在R上的奇函数f(x),当x>0时f(x)=x2+2,则函数f(x)的值域为{y|y≥2或y≤-2};
②若不等式x3+x2+a<0对一切x∈[0,2]恒成立,则实数a的取值范围是{a|a<-12};
③当f(x)=log3x时,对于函数f(x)定义域中任意的x1,x2(x1≠x2)都有f(
x1+x2
2
)<
f(x1)+f(x2)
2

④设g(x)表示不超过t>0的最大整数,如:[2]=2,[1.25]=1,对于给定的n∈N+,定义
C
x
n
=
n(n-1)…(n-[x]+1)
x(x-1)…(x-[x]+1)
,x∈[1,+∞),则当x∈[
3
2
,2)时函数
C
x
8
的值域是(4,
16
3
]

上述判断中正确的结论的序号是
②④
②④

查看答案和解析>>


同步练习册答案