题目列表(包括答案和解析)
设m<0,若两直线与垂直,则的最大值为 .
设M是由满足下列两个条件的函数构成的集合:
①议程有实根;②函数的导数满足0<<1.
(I)若,判断方程的根的个数;
(II)判断(I)中的函数是否为集合M的元素;
(III)对于M中的任意函数,设x1是方程的实根,求证:对于定义域中任意的x2,x3,当| x2-x1|<1,且| x3-x1|<1时,有
有下列命题:
①;到两个定点 距离的和等于定长的点的轨迹是椭圆;
②命题“若,则”的逆否命题是:若;
③曲线表示双曲线
④设集合M = {x | 0< x ≤3},N = {x | 0< x ≤2},则“a∈M”是“a∈N”的充分而不必要条件则上述命题中真命题为 (填上序号)
已知函数f(x)=lnx+x2. (1)若函数g(x)=f(x)-ax在定义域内为增函数,求实数a的取值范围; (2)在(1)的条件下,若a>1,h(x)=e3x-3aex,x∈[0,ln2],求h(x)的极小值; (3)设F(x)=2f(x)-3x2-kx(k∈R),若函数F(x)存在两个零点m,n(0<m<n),且满足2x0=m+n,问:函数F(x)在(x0,F(x0))处的切线能否平行于x轴?若能,求出该切线方程,若不能,请说明理由.
已知函数f(x)=lnx+x2. (1)若函数g(x)=f(x)-ax在定义域内为增函数,求实数a的取值范围; (2)在(1)的条件下,若a>1,h(x)=e3x-3aex,x∈[0,ln2],求h(x)的极小值; (3)设F(x)=2f(x)-3x2-kx(k∈R),若函数F(x)存在两个零点m,n(0<m<n),且满足2x0=m+n,问:函数F(x)在(x0,F(x0))处的切线能否平行于x轴?若能,求出该切线方程,若不能,请说明理由.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com