求证: 证明: 注:1.放缩法的理论依据.是不等式的传递性.即若则.2.使用放缩法时.“放 .“缩 都不要过头.3.放缩法是一种技巧性较强的不等变形.一般用于两边差别较大的不等式.常用的有“添舍放缩 和“分式放缩 .都是用于不等式证明中局部放缩. 查看更多

 

题目列表(包括答案和解析)

(2013•汕头一模)数列{an}的前n项和为Sn,存在常数A,B,C,使得an+Sn=An2+Bn+C对任意正整数n都成立.
(1)若A=-
1
2
,B=-
3
2
,C=1,设bn=an+n,求证:数列{bn}是等比数列;
(2)在(1)的条件下,cn=(2n+1)bn,数列{cn}的前n项和为Tn,证明:Tn<5;
(3)若C=0,{an}是首项为1的等差数列,若λ+n≤
n
i=1
1+
2
a
2
i
+
1
a
2
i+1
对任意的正整数n都成立,求实数λ的取值范围(注:
n
i=1
xi
=x1+x2+…+xn

查看答案和解析>>

设向量
=(x , 2)
=(x+n , 2x-1)
(n为正整数),函数y=
在[0,1]上的最小值与最大值的和为an,又数列{bn}满足:nb1+(n-1)b2+…+2bn-1+bn=(
9
10
)n-1+(
9
10
)n-2+…+
9
10
+1

(1)求证:an=n+1(2).
(2)求bn的表达式.
(3)若cn=-an•bn,试问数列{cn}中,是否存在正整数k,使得对于任意的正整数n,都有cn≤ck成立?证明你的结论.(注:
=( a1 ,a2 )
={ a1 ,a2 }
表示意义相同)

查看答案和解析>>

执行下面框图所描述的算法程序,记输出的一列数依次为a1,a2,…,an,n∈N*,n≤2011.(注:框图中的赋值符号“=”也可以写成“←”或“:=”)
精英家教网
(1)若输入λ=
2
,写出输出结果;
(2)若输入λ=2,令bn=
1
an-1
,证明bn是等差数列,并写出数列an的通项公式;
(3)若输入λ=
5
2
,令cn=
2an-1
an-2
,T=c1+2c2+3c3+…+2011c2011.求证:T<
8
9

查看答案和解析>>

(1)对于定义在(0,+∞)上的函数f(x),满足xf′(x)+2f(x)<0,求证:函数y=x2f(x)在(0,+∞)上是减函数;
(2)请你认真研读(1)中命题并联系以下命题:若f(x)是定义在(0,+∞)上的可导函数,满足xf′(x)+f(x)<0,则y=xf(x)是(0,+∞)上的减函数.然后填空建立一个普遍化的命题:设f(x)是定义在(0,+∞)上的可导函数,n∈N+,若
x
x
×f′(x)+n×f(x)<0,则
y=xnf(x)
y=xnf(x)
是(0,+∞)上的减函数.
注:命题的普遍化就是从考虑一个对象过渡到考虑包含该对象的一个集合;或者从考虑一个较小的集合过渡到考虑包含该较小集合的更大集合.
(3)证明(2)中建立的普遍化命题.

查看答案和解析>>

(本小题满分14分)
执行下面框图所描述的算法程序,记输出的一列数依次为,…,.(注:框图中的赋值符号“”也可以写成“”或“:”)
(1)若输入,写出输出结果;
(2)若输入,令,证明是等差数列,并写出数列的通项公式;
(3)若输入,令
求证:

查看答案和解析>>


同步练习册答案